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Abstract
In this paper, we study continuous opinion formation games with aggregation aspects.
In many domains, expressed opinions of people are not only affected by local inter-
action and personal beliefs, but also by influences that stem from global properties of
the opinions present in the society. To capture the interplay of such global and local
effects, we propose a model of opinion formation games with aggregation, where we
concentrate on the average public opinion as a natural way to represent a global trend
in the society. While the average alone does not have good strategic properties as an
aggregation rule, we show that with a limited influence of the average public opinion,
the good properties of opinion formation models are preserved. More formally, we
show that a unique equilibrium exists in average-oriented opinion formation games.
Simultaneous best-response dynamics converge to within distance ε of equilibrium
in O(n2 ln(n/ε)) rounds, even in a model with outdated information on the average
public opinion. For the Price of Anarchy, we show an upper bound of 9/8 + o(1),
almost matching the tight bound for games without aggregation. We prove some of
the results in the context of a general class of opinion formation games with negative
influences, and we extend our results to cases where expressed opinions must come
from a restricted domain.

Keywords Opinion formation games · Opinion dynamics · Convergence ·
Price of anarchy

1 Introduction

The formation and dynamics of opinions are an important aspect in modern society
and have been studied extensively for decades (see e.g., [16]). Opinion formation
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is based on information exchange, which is often local in the sense that socially
connected people (e.g., family, friends, colleagues) interact more often and affect
each other’s opinion more strongly. Moreover, opinion formation is often dynamic
in the sense that discussions and interactions lead to changes in the expressed opin-
ions. With the advent of the internet and social media, local and dynamic aspects of
opinion formation have become ever more dominant. To capture opinion formation
on a formal level, several models have been proposed (see e.g., [4, 6, 9, 12, 13, 15]
for continuous opinions and [5, 10, 21] for discrete ones). A common assumption,
that dates back to DeGroot [9], is that opinions evolve through a form of repeated
averaging of local information collected from the agent social neighborhoods.

1.1 Motivation and Opinion FormationModel

Our work builds on the influential model of Friedkin and Johnsen (FJ) [12] for
continuous opinion formation and dynamics. In fact, we adopt the game-theoretic
viewpoint of [6] to the FJ model. In the FJ model, each agent i holds an intrinsic
belief si ∈ [0, 1], which is private and invariant over time, and a public opinion
zi ∈ [0, 1]. Agent i selects her public opinion so as to minimize the total (weighted)
disagreement of zi to her intrinsic belief and to the public opinions in her social
neighborhood. In a dynamic setting, the agents start with their beliefs and in each
round t ≥ 1, update their opinion zi(t) to the minimizer of their disagreement cost,
given the opinions of the others in the previous round.

The FJ model is elegant, extensively studied, and has nice algorithmic properties.
It admits a unique equilibrium [6, 12], i.e., a stable state where each agent’s pub-
lic opinion minimizes her disagreement cost, given the public opinions expressed by
other agents, and the simultaneous best-response dynamics converges fast to it [13].
The efficiency of the equilibrium is quantified by the Price of Anarchy (PoA), which
is the ratio of the total disagreement cost of the agents at equilibrium to the opti-
mal total disagreement cost. For the FJ model, the PoA is 9/8 for undirected social
networks, and �(n) for general directed networks [6]. Moreover, tight PoA bounds
can be obtained by an elegant local smoothness argument for both undirected [4] and
directed [8] social networks.

Despite these favorable properties, the FJ model disregards influences from global
properties of the public opinions, and also the nature of the dynamics of consensus
formation. In many domains, public opinions are not only affected by local interac-
tion and personal beliefs, as in e.g., [4, 6, 7, 9, 12, 13], but also by influences that
stem from global properties of the opinions present in the society. People are getting
exposed to global trends, societal norms, results from voting and polling, etc., which
are usually interpreted as the consensus view of the society and may crucially affect
opinion formation. Furthermore, groups of people (or networks of agents) often need
to agree on a common action, even if their beliefs and/or their expressed opinions
are totally different. This might happen e.g., when some networked devices need to
implement a common action, when people vote over a set of alternatives, or when
a wisdom-of-the-crowd opinion is formed in a social network. In similar situations,
an aggregation rule maps the public opinions to a global opinion that represents the
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consensus view on the issue at hand. E.g., in the FJ model, the global opinion might
be the average or the median of the equilibrium opinions.

In presence of aggregation, the agents can also anticipate the impact of their public
opinions on the global one and might incorporate it in their opinion selection. Then,
the disagreement cost should also account for the distance of an agent’s intrinsic
belief to the global opinion. To address these issues, we consider a variant of the
opinion formation game of [6, 12, 13] with opinion aggregation. Each agent i selects
her opinion zi so as to minimize:

Ci(z) = wi(si − zi)
2 +

∑

j �=i

wij (zj − zi)
2 + αi(aggr(z) − si)

2 . (1)

In (1), z = (z1, . . . , zn) ∈ R
n is the vector of public opinions, si ∈ [0, 1] is the belief

of agent i , and aggr(z) maps z to a global opinion aggr(z). The weights wij ≥ 0
quantify how much the public opinion of agent j influences i, the weight wi > 0
quantifies i’s self-confidence, and the weight αi > 0 quantifies the appeal of the
global opinion aggr(z) to i.

Motivated by previous work on the wisdom of the crowd (see e.g., [16, Sec. 8.3],
[14]), we concentrate on average-oriented opinion formation games, where the
aggregation rule aggr(z) maps z to its average avg(z) = ∑n

j=1 zj /n . Then, the best
response of each agent i to a public opinion vector z is:

zi =
(
wi + αi

n

)
si + ∑

j �=i

(
wij − αi

n2

)
zj

wi + αi

n2 + ∑
j �=i wij

. (2)

1.2 Contribution

The aggregation rule in (1) might significantly affect both the dynamics and the equi-
librium of opinion formation. In this work, we characterize to which extent the nice
algorithmic properties of the FJ model are affected by aggregation effects.

A first challenge is evident in (2), where i’s influence from some opinions zj

can be negative. Negative influence here models agent competition for dragging the
average public opinion close to their intrinsic beliefs. Despite negative influence,
we show that if agents admit a certain level of self-confidence, simultaneous best-
response dynamics in average-oriented opinion formation games converges fast to
the unique equilibrium of the game. We should highlight that assuming positive self-
confidence is necessary for convergence (see e.g., [12, 13]) and that the convergence
time decreases as the ratio of wi to αi and to

∑
j �=i wij increases. For clarity, we

make the reasonable assumptions that wi ≥ αi and that wi ≥ ∑
j �=i wij /(n − 1).

Namely, we assume that the self-confidence level of each agent is no less than her
influence from the average public opinion and no less than her average influence
from other agents (this is also consistent with the self-confidence level assumed in
[13]). For this self-confidence level, we show (Lemma 1) that simultaneous best-
response dynamics in average-oriented opinion formation games converges to the
unique equilibrium within distance ε > 0 in O(n2 ln(n/ε)) rounds. We highlight that
our analysis is general and provides an upper bound on the convergence rate of best
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response dynamics in virtually all cases where convergence is guaranteed (see also
the discussion in Section 2.1).

For this result, we assume that all agents have access to the average public opinion
in each round. Since the average is global information and thus expensive to obtain in
large networks, we consider average-oriented opinion dynamics with outdated infor-
mation. Here the average public opinion is announced to all the agents simultaneously
every few rounds (e.g., a polling agency publishes this information in a web page
now and then). We prove (Theorem 1) that opinion dynamics with outdated informa-
tion about the average converges to the unique equilibrium (with full information on
the average) within distance ε > 0 after O(n2 ln(n/ε)) updates on the average. Both
these results are proven for a more general setting with negative influence between
the agents and with partially outdated information about the agent public opinions.
We essentially prove that negative influence and outdated information do not intro-
duce undesirable oscillating phenomena to opinion dynamics. Our proofs make use
of matrix norm properties, which allow us to deal with negative influence between
the agents and with the difficulties introduced by outdated information.

In Section 4, we bound the PoA of average-oriented opinion formation games.
We restrict our attention to the most interesting case of symmetric games, where
wij = wji ≥ 0 for all agent pairs i �= j , all agents have the same self-confidence
w and the same influence α from the average. For nonsymmetric games the PoA
is �(n), even without aggregation (i.e., when α = 0, see [6, Fig. 2]). We show
(Theorem 2) that the PoA is at most 9/8+O(α/(wn2)). In general, this bound cannot
be improved since for α = 0, 9/8 is a tight bound for the PoA under the FJ model
[6]. The proof builds on the elegant local smoothness approach of [4]. However,
local smoothness cannot be directly applied to symmetric average-oriented games,
because the function (avg(z)−si)

2 is not locally smooth. To overcome this difficulty,
we carefully combine local smoothness with the fact that the average public opinion
at equilibrium is equal to the average intrinsic belief, a consequence of symmetry
(Proposition 1).

A frequent assumption in the literature on continuous opinion formation is that
agent beliefs and opinions take values in a finite interval of non-negative real num-
bers. Then, by scaling, one can assume that beliefs and opinions lie in [0, 1]. Thus,
we always assume that agent beliefs si ∈ [0, 1]. On the other hand, an important side-
effect of negative influence is that the best-response (and equilibrium) opinions may
become polarized and be pushed towards opposite directions, far away from [0, 1].
We believe that such opinion polarization is natural and should be allowed when
negative influence is considered. Therefore, in Sections 3 and 4, we assume that the
public opinions take arbitrary real values. Then, in Section 5, we consider restricted
average-oriented games, where public opinions are restricted to [0, 1], and study how
convergence properties and the price of anarchy are affected.

Existence and uniqueness of equilibrium for restricted opinion formation games
follow from [19]. We prove (Lemma 3 and Theorem 3) that the convergence rate
of opinion dynamics with negative influence and with outdated information is not
affected by restriction of public opinions to [0, 1]. The analysis of the convergence
rate is similar to that for (unrestricted) opinion formation games. The only difference
is a simple case analysis, in the final part of the proofs of Lemma 3 and Theorem 3,
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which establishes that the distance of the restricted opinion vector to equilibrium
decreases at least as fast as the corresponding distance in the unrestricted case.

For the PoA of restricted symmetric games, we consider the special case where
w = α = 1 and show that the PoA ≤ 3 + 2

√
2 + O( 1

n
) (Theorem 4). The main

technical challenge in the PoA analysis of restricted games is that the local smooth-
ness argument of Theorem 2 does not apply, because the function (avg(z) − si)

2 is
not locally smooth and the average public opinion at equilibrium may be far from the
average intrinsic belief. Hence, in the proof of Theorem 4, we need to advance sub-
stantially beyond the local smoothness argument of Theorem 2. More specifically,
we first show that if all agents only value the distance of their opinion to the average
and to their belief (i.e., if wij = 0 for all i �= j ), the PoA is at most 1 + 1/n2 (Propo-
sition 6). Then we combine the PoA of this simpler game with the local smoothness
inequality of [4] and bound the PoA of restricted symmetric games.

Clearly, there are many alternative ways to model aggregation, which offer inter-
esting directions for future research. For example, a possible aggregation is the
median instead of the average. The median aggregation rule is prominent in Social
Choice (see e.g., [3, 17]). However, it turns out that the FJ model with median
aggregation has significantly less favorable properties. There are examples where
median-oriented games lack exact equilibria (and, hence, convergence of best-
response dynamics), but they can be shown to have approximate equilibria. A study
of the median rule is beyond the scope of this paper.

1.3 Further RelatedWork

To the best of our knowledge, this is the first work to analyze the convergence of
simultaneous best-response dynamics of the FJ model with negative influence and
outdated information, or the price of anarchy of the FJ model with average opinion
aggregation. However, there is some recent work on properties of opinion forma-
tion either with global information, or with negative influence, or where consensus
is sought. We concentrate here on related previous work most relevant to ours. Dis-
crete opinion formation is considered in [11] in the binary voter model, where each
agent i has a certain probability of adopting the opinion of an agent outside i’s local
neighborhood (this is conceptually equivalent to estimating the average opinion with
random sampling). The authors analyze the convergence time and the probability
that consensus is reached. In [18], the authors provide a formal model and analyze
continuous opinion formation, based on the bounded-confidence model of Deffuant-
Weisbuch, in a population with individuals and opinion leaders (i.e., media), where
the latter can be regarded opinion aggregators. They mostly investigate conditions
under which consensus, polarization, or opinion fragmentation is reached. Games
with only two opposite opinions in the network are studied in [1], where necessary
and sufficient conditions are derived under which local interaction in social net-
works with positive and negative influence reaches consensus. Recently, a model of
discrete opinion formation was introduced in [2] with generalized social relations,
which include positive and negative influence. The authors show that generalized
discrete opinion formation games admit a potential function, and thus, best-response
dynamics converge to a pure Nash equilibrium.
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2 Model and Preliminaries

We define [n] ≡ {1, . . . , n}. For a vector z, zi denotes the i-th coordinate of z, z−i is
z without its i-th coordinate, and (z, z−i ) is the vector obtained from z if we replace
zi with z. For a vector z (resp. matrix A), zT (resp. AT ) denotes the transpose. We
define 0 ≡ (0, . . . , 0) and I as the n × n identity matrix. We use capital letters for
matrices and lowercase letters for their elements, with the understanding that aij is
the (i, j) element of a matrix A.

For an n × n matrix A, ‖A‖ = maxi∈[n]
∑n

j=1 |aij | is the infinity norm of A.
Similarly, for an n-dimensional vector z, ‖z‖ = maxi∈[n] |zi | is the infinity norm
of z. We use the standard properties of matrix norms without explicitly referring to
them. Specifically, we use that (i) for any matrices A and B, ‖AB‖ ≤ ‖A‖ ‖B‖ and
‖A + B‖ ≤ ‖A‖ + ‖B‖; (ii) for any matrix A and any λ ∈ R, ‖λA‖ ≤ |λ| ‖A‖; and
(iii) for any matrix A and any integer �, ‖A�‖ ≤ ‖A‖�. Moreover, we use that for any
n × n real matrix A with ‖A‖ < 1,

∑∞
�=0 A� = (I − A)−1.

2.1 Average-Oriented Opinion Formation

We consider average-oriented opinion formation games with n agents. The model,
the agent cost functions and their best response are introduced in Section 1. Next, we
give some definitions and state some useful facts.

Without loss of generality, we assume that the vector of agent beliefs s lies in
[0, 1]n. As for the public opinions z, we initially assume values in R and then, in
Section 5, explain what changes if we restrict them to [0, 1]. An average-oriented
opinion formation game G is symmetric if wij = wji for all i �= j , and wi = w and
αi = α for all i ∈ N . G is nonsymmetric otherwise. If the game is symmetric, we
let w = 1, by scaling other weights accordingly. The convergence results hold for
nonsymmetric games, while the PoA bounds hold only for symmetric ones.

A vector z∗ is an equilibrium of an opinion formation game G if for any agent
i and any opinion z, Ci(z

∗) ≤ Ci(z, z
∗−i ), i.e., the agents cannot improve on their

individual cost at z∗ by unilaterally changing their opinions. The social cost C(z)

of G is C(z) = ∑
i∈N Ci(z). An opinion vector o is optimal if for any z, C(o) ≤

C(z). The Price of Anarchy of G, or PoA(G), is C(z∗)/C(o), where z∗ is the unique
equilibrium of G and o is an optimal vector.

To study the convergence properties of simultaneous best-response dynamics, it is
convenient to write (2) in matrix form. Let Si = wi + αi

n2 +∑
j �=i wij . We define two

n×n matrices A and B. Matrix A has aii = 0, for all i ∈ N , and aij = (wij − αi

n2 )/Si ,
for all j �= i. Matrix B is diagonal and has bii = (wi + αi

n
)/Si , for all i ∈ N , and

bij = 0, for all j �= i. We always assume that Si > 0. This assumption is required so

that d2Ci(z)

dz2
i

= 2Si > 0 and the function Ci(z) is strictly convex in zi , even if some

entries of A are negative.
Assuming that agent self-confidence levels wi are positive is necessary for con-

vergence of opinion formation games (if we do not make any further assumptions
on matrix A, e.g., consider an opinion formation game where wi = αi = 0 for
all agents i and the matrix A corresponds to the adjacency matrix of a bipartite
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network). Similarly to [13] and for clarity, we assume that wi ≥ ∑
j �=i wij /(n − 1)

for all agents i. Namely, we assume that the self-confidence level of each agent is at
least as large as her average influence from other agents. Moreover, we assume that
for any agent i, wi ≥ αi , i.e., that the self-confidence level of any agent is no less
than her influence from the average public opinion. These two assumptions immedi-
ately imply that αi ≤ Si ≤ (n + 1

n2 )wi , for any agent i. Using this inequality on Si ,
we obtain the following inequality, which allows for a quasi-quadratic upper bound
on the convergence rate of best-response dynamics:

‖A‖ ≤ Si − wi + αi(n−2)

n2

Si

≤ Si − Si
n2

n3+1
+ Si

(n−2)

n2

Si

≤ 1− 2

n2
+ 1

n3
≤ 1− 1

n2
. (3)

We use (3) in Corollary 1 and Corollary 2 and show that the best response dynamics
converges to equilibrium within distance ε > 0 in O(n2 ln(n/ε)) rounds. However,
our analysis of the convergence rate is general and can be applied under the weaker
assumption that ‖A‖ < 1. Then, the convergence time depends on 1 − ‖A‖ (see also
Lemma 1 and Theorem 1).

We usually refer to matrices similar to A, i.e., with infinity norm less than 1 and 0s
in their diagonal, as influence matrices, and to matrices similar to B, i.e., to diagonal
matrices with positive elements, as self-confidence matrices.

The simultaneous best-response dynamics of an average-oriented game G starts
with z(0) = s and proceeds in rounds. In each round t ≥ 1, the public opinion vector
z(t) is:

z(t) = Az(t − 1) + Bs . (4)

We usually refer to (4) and to similar equations as opinion formation processes. We
say that an opinion formation process {z(t)}t∈N converges to a stable state z∗ if for
all ε > 0, there is a t∗(ε), such that for all t ≥ t∗(ε), ‖z(t) − z∗‖ ≤ ε. Iterating (4)
over t (see also [13, Sec. 2]), we obtain that for all rounds t ≥ 1,

z(t) = Az(t − 1) + Bs = A(Az(t − 2) + Bs) + Bs = · · · = At s +
t−1∑

�=0

A�Bs . (5)

2.2 Average-Oriented Opinion Formation with Outdated Information

We study opinion formation when the agents have outdated information about the
average public opinion. We assume an infinite increasing sequence of rounds 0 =
τ0 < τ1 < τ2 < · · · that describes an update schedule for the average opinion. At the
end of round τp, the average avg(z(τp)) is announced to the agents. We refer to the
rounds between two updates as an epoch. Specifically, the rounds τp + 1, . . . , τp+1
comprise epoch p. We assume that the length of each epoch p, denoted by kp =
τp+1 −τp ≥ 1, is finite. The update schedule is the same for all agents, but the agents
do not need to have any information about it. They only need to be aware of the most
recent value of the average public opinion provided to them.

We now need to distinguish in (2) and (4) between the influence from social neigh-
bors, for which the most recent opinions z(t − 1) are used, and the influence from
the average public opinion, where possibly outdated information is used. As such, we
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now rely on three different n × n matrices D, E and B. Self-confidence matrix B is
defined as before. Influence matrix D has dii = 0, for all i ∈ N , and dij = wij /Si ,
for all j �= i, and accounts for the influence from social neighbors. Influence matrix
E has eii = 0, for all i ∈ N , and eij = −αi/(n

2Si), for all j �= i, and accounts for
the influence from the average public opinion. By definition, A = D +E. Moreover,
‖D‖ ≤ 1 − 1/n and that ‖E‖ ≤ (n − 1)/n2.

At the beginning of the opinion formation process, z(0) = s. For each round t in
epoch p, τp + 1 ≤ t ≤ τp+1, the agent opinions are updated according to:

z(t) = Dz(t − 1) + Ez(τp) + Bs (6)

We note that at the beginning of each epoch p, every agent i can subtract zi(τp) from
n avg(z(τp)) and compute Ez(τp), which is required in (6), as − αi

n2Si
(n avg(z(τp))−

zi(τp)).

2.3 Opinion Formation with Negative Influence

An interesting aspect of average-oriented games is that the influence matrix A may
contain negative elements. Motivated by this observation, we prove our convergence
results for a general domain of opinion formation games that may have negative
weights wij . Similar to [6, 13], the individual cost function of each agent i is Ci(z) =
wi(zi − si)

2 + ∑
j �=i wij (zi − zj )

2, and i’s best response to z−i is

zi = wisi + ∑
j �=i wij zj

wi + ∑
j �=i wij

. (7)

The important difference is that now some wij may be negative. We require that for
each agent i, wi > 0 and Si = wi +∑

j �=i wij > 0 (and thus, Ci(z) is strictly convex
in zi). The matrices A and B are defined as before. Namely, aij = wij /Si , for all
i �= j , and B has bii = wi/Si for all i. We always require that ‖A‖ < 1 − β, for
some β > 0 (β may depend on n). Simultaneous best-response dynamics is again
defined by (4).

3 Convergence of Average-Oriented Opinion Formation

For any nonnegative influence matrix A with ‖A‖ ≤ 1 − β, (4) converges to the
equilibrium point z∗ = (I − A)−1Bs within distance ε in O(ln(

‖B‖
εβ

)/β) rounds, as
shown in [13, Lemma 3]. The following lemma shows that the same convergence rate
holds for average-oriented opinion formation games, where A may contain negative
elements. The proof is very similar to the proof of [13, Lemma 3] and we include it
for completeness. The only minor difference is that the proof of Lemma 1 uses the
infinity norm of A, instead of the largest eigenvalue of A in [13]. Using the infinity
norm of A allows for a direct generalization of Lemma 1 to the case of average-
oriented opinion formation games with outdated information.
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Lemma 1 Let A be any influence matrix, possibly with negative elements, such that
‖A‖ ≤ 1−β, for some β > 0. Then, for any self-confidence matrix B, any s ∈ [0, 1]n
and any ε > 0, the opinion formation process z(t) = Az(t − 1) + Bs converges to
z∗ = (I − A)−1Bs within distance ε in O(ln(

‖B‖
εβ

)/β) rounds.

Proof By (5), we have that for any t ≥ 1, z(t) = At s + ∑t−1
�=0 A�Bs. Since ‖A‖ ≤

1 − β, ‖At‖ ≤ (1 − β)t . Therefore, limt→∞ At s = 0 and (5) converges to z∗ =∑∞
�=0 A�Bs. Using the identity

∑∞
�=0 A� = (I − A)−1, we obtain that z∗ = (I −

A)−1Bs. We note that since ‖A‖ < 1, the matrix I−A is strictly diagonally dominant
and thus non-singular. Moreover,

‖(I − A)−1‖ ≤
∞∑

�=0

‖A�‖ ≤
∞∑

�=0

(1 − β)� = 1/β .

To bound the convergence time to z∗, we define e(t) = ‖z(t) − z∗‖ =
maxi∈N |zi(t) − z∗

i | as the distance of the opinions at time t to equilibrium. We next
show that e(t) is decreasing in t and obtain an upper bound on t∗(ε) = min{t : e(t) ≤
ε}. We observe that for any t ≥ 1,

e(t) = ‖z(t) − z∗‖
= ‖Az(t − 1) + Bs − Az∗ − Bs‖
≤ ‖A‖ ‖z(t − 1) − z∗‖
≤ (1 − β)e(t − 1) ≤ (1 − β)t e(0) .

Since s ∈ [0, 1]n and ‖(I − A)−1‖ ≤ 1/β, we obtain that

‖z∗‖ ≤ ‖(I − A)−1Bs‖ ≤ ‖(I − A)−1‖ ‖B‖ ‖s‖ ≤ ‖B‖/β .

Since z(0) = s, we have that e(0) = ‖s − z∗‖ ≤ 1 + ‖B‖/β. Hence, t∗(ε) =
O(ln(

‖B‖
εβ

)/β).

Since I−A is nonsingular, z∗ is the unique opinion vector that satisfies z∗ = Az∗+
Bs. Thus, z∗ is the unique equilibrium of the corresponding opinion formation game.
Moreover, since for average-oriented games ‖A‖ ≤ 1 − 1/n2, Lemma 1 implies the
following:

Corollary 1 Any average-oriented game admits a unique equilibrium z∗ = (I −
A)−1Bs, and for any ε > 0, (4) converges to z∗ within distance ε in O(n2 ln(n/ε))

rounds.

3.1 Convergence with Outdated Information

Next, we extend Lemma 1 to the case where the agents use possibly outdated infor-
mation about the average public opinion in each round. More generally, we establish
convergence for a general domain with negative influence between the agents, which
includes average-oriented opinion formation processes as a special case.
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Theorem 1 Let D and E be influence matrices, possibly with negative elements,
such that ‖D‖ ≤ 1 − β1, ‖E‖ ≤ 1 − β2, for some β1, β2 ∈ (0, 1) with β1 + β2 > 1.
Then, for any self-confidence matrix B, any s ∈ [0, 1]n, any update schedule 0 =
τ0 < τ1 < τ2 < · · · and any ε > 0, the opinion formation process (6) converges
to z∗ = (I − (D + E))−1Bs within distance ε in O(ln(

‖B‖
εβ

)/β) epochs, where β =
β1 + β2 − 1 > 0.

Proof We observe that z∗ = (I − (D + E))−1Bs is the unique solution of z∗ =
Dz∗ + Ez∗ + Bs (as in Lemma 1, since ‖E + D‖ ≤ 1 − β, with β > 0, the matrix
I − (D + E) is non-singular). Hence, if (6) converges, it converges to z∗. To show
convergence, we bound the distance of z(t) to z∗ by a decreasing function of t and
show an upper bound on t∗(ε) = min{t : e(t) ≤ ε}.

As in the proof of Lemma 1, for each round t ≥ 1, we define e(t) = ‖z(t) − z∗‖
as the distance of the opinions at time t to z∗. For convenience, we also define

f (β1, β2, k) = (1 − β1)
k + (1 − β2)

1 − (1 − β1)
k

β1
.

For any fixed value of β1, β2 ∈ (0, 1) with β1 + β2 > 1, f (β1, β2, k) is a decreasing
function of k. Actually, the derivative of f with respect to k is equal to ln(1−β1)(1−
β1)

k(1 − 1−β2
β1

), which is negative, because 1 > (1 − β2)/β1, since β1 + β2 > 1.
We next show that:

Claim (i). For any epoch p ≥ 0 and any round k, 0 ≤ k ≤ kp, in epoch p,

e(τp + k) ≤ f (β1, β2, k)e(τp) .

Claim (ii). In the last round τp+1 = τp + kp of each epoch p ≥ 0, e(τp+1) ≤
(1 − β)e(τp).

Claim (i) shows that the distance to equilibrium decreases from each round to the next
within each epoch, while Claim (ii) shows that the distance to equilibrium decreases
geometrically from the last round of each epoch to the last round of the next epoch.
Combining Claim (i) and Claim (ii), we obtain that for any epoch p ≥ 0 and any
round k, 0 ≤ k ≤ kp, in epoch p, e(τp + k) ≤ f (β1, β2, k)(1 − β)pe(0). Therefore,
for any update schedule τ0 < τ1 < τ2 < · · · , the opinion formation process (6)
converges to (I − (D + E))−1Bs in O(ln(e(0)/ε)/β) epochs.

To prove Claim (i), we fix any epoch p ≥ 0 and apply induction on k. The basis,
where k = 0, holds because f (β1, β2, 0) = 1. For any round k, with 1 ≤ k ≤ kp, in
p, we have that:

e(τp + k) = ‖Dz(τp + k − 1) + Ez(τp) + Bs − (Dz∗ + Ez∗ + Bs)‖
≤ ‖D‖ ‖z(τp + k − 1) − z∗‖ + ‖E‖ ‖z(τp) − z∗‖
≤ (1 − β1)e(τp + k − 1) + (1 − β2)e(τp)

≤ (1 − β1)f (β1, β2, k − 1)e(τp) + (1 − β2)e(τp) = f (β1, β2, k)e(τp) .

The first inequality follows from the properties of matrix norms. The second inequal-
ity holds because ‖D‖ ≤ 1−β1 and ‖E‖ ≤ 1−β2. The third inequality follows from
the induction hypothesis. Finally, we use that for any k ≥ 1, (1 − β1)f (β1, β2, k −
1) + 1 − β2 = f (β1, β2, k).
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To prove Claim (ii), we fix any epoch p ≥ 0 and apply claim (i) to the last round
τp+1 = τp + kp, with kp ≥ 1, of epoch p. Hence, e(τp+1) = ‖z(τp + kp) − z∗‖ ≤
f (β1, β2, kp)e(τp).

We next show that f (β1, β2, kp) ≤ 2 − (β1 + β2) = 1 − β, which concludes the
proof of the claim. The inequality holds because for any integer k ≥ 1, f (β1, β2, k)

is a convex function of β1. For a formal proof, we fix any k ≥ 1 and any β2 ∈ (0, 1),

and consider the functions g(x) = (1−x)k+ 1−(1−x)k

x
(1−β2) and h(x) = 2−β2−x,

where x ∈ [1 − β2, 1] (since we assume that β1 ∈ (0, 1) and that β1 > 1 − β2). For
any fixed value of β2 ∈ (0, 1), h(x) is a linear function of x with h(1 − β2) = 1
and h(1) = 1 − β2. For any fixed value of k ≥ 1 and β2 ∈ (0, 1), g(x) is a convex
function of x with g(1−β2) = 1 = h(1−β2) and g(1) = 1−β2 = h(1). Therefore,
for any β1 ∈ [1 − β2, 1], g(β1) ≤ h(β1) = 2 − (β1 + β2).

To obtain an upper bound on e(0) = ‖s−z∗‖, we work as in the proof of Lemma 1,
using the fact that ‖D+E‖ ≤ 1−β, and show first that ‖(I−(D+E))−1‖ ≤ 1/β and
then that ‖z∗‖ ≤ ‖B‖/β. Since z(0) = s, we have that e(0) = ‖s−z∗‖ ≤ 1+‖B‖/β.
Using the fact that for each epoch p ≥ 0 and for every round k, 0 ≤ k ≤ kp, in
p, e(τp + k) ≤ f (β1, β2, k)(1 − β)pe(0), we obtain that t∗(ε) = O(ln(

‖B‖
εβ

)/β)

epochs.

For average-oriented opinion formation games, D + E = A, ‖D‖ ≤ 1 − 1/n

and ‖E‖ ≤ (n − 1)/n2. Hence, applying Theorem 1 with β ≥ 1/n2, we obtain the
following:

Corollary 2 For any update schedule and any ε > 0, the opinion formation pro-
cess (6) with outdated information about avg(z(t)) converges to the equilibrium
z∗ = (I − A)−1Bs of the corresponding average-oriented game within distance ε in
O(n2 ln(n/ε)) epochs.

4 The Price of Anarchy of Symmetric Average-Oriented Games

In this section, we proceed to bound the PoA of average-oriented opinion formation
games. We now concentrate on the most interesting case of symmetric games, since
nonsymmetric opinion formation games can have a PoA of �(n), even if α = 0 (see
e.g., [6, Fig. 2]). Recall that for symmetric games, wij = wji for all agent pairs i, j ,
and wi = 1 and αi = α, for all agents i.

Our analysis generalizes a local smoothness argument put forward in [4, Sec. 3.1].
A function C(z) is (λ, μ)-locally smooth [20] if there exist λ > 0 and μ ∈ (0, 1),
such that for all z, x ∈ R

n,

C(z) + (x − z)T C′(z) ≤ λC(x) + μC(z) , (8)

where C′(z) = (
dC1(z)

dz1
,

dC2(z)
dz2

, · · · ,
dCn(z)

dzn
), i.e., the vector of the partial deriva-

tives of C(z) with respect to z1, . . . , zn . At the equilibrium z∗, C′(z∗) = 0.
Hence, applying (8) for the equilibrium z∗ and for the optimal solution o, we
obtain that PoA ≤ λ/(1 − μ). For symmetric games without aggregation, i.e.,
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with α = 0, it is known [4, Sec. 3.1] that for any s ∈ [0, 1]n, the cost func-
tion

∑n
i=1(zi − si)

2 + ∑
i∈N

∑
j �=i wij (zi − zj )

2 is (λ, μ)-locally smooth for any
λ ≥ max{1/(4μ), 1/(μ + 1)} (see also Proposition 3 and Proposition 4). Then, by
selecting λ = 3/4 and μ = 1/3, the PoA of symmetric opinion formation games
without aggregation can be bounded to at most 9/8 [4]. This is tight as shown
in [6, Fig. 1].

This elegant approach cannot be directly generalized to symmetric average-
oriented opinion formation games, because the function

∑
i∈N(avg(z) − si)

2 is not
(λ, μ)-locally smooth for any μ < 1. To circumvent this difficulty, we use the local
smoothness technique in a more creative way. Observe that finding appropriate val-
ues of λ,μ that satisfy (8) for all x, z ∈ [0, 1]n may be both a hard and a redundant
task, because (8) is applied only for z = z∗ and x = o∗, where z∗ denotes the equi-
librium and o∗ denotes the optimal vector. Next, we derive appropriate values of λ,μ

so that (8) holds for all opinion vectors x, z ∈ [0, 1]n for which avg(z) = avg(s).
In Proposition 1, we show that for symmetric opinion formation games, the average
equilibrium opinion is equal to the average belief, which allows us to bound the PoA.

Proposition 1 Let z∗ be the equilibrium and s the agent belief vector of any
symmetric average-oriented opinion formation game. Then, avg(z∗) = avg(s).

Proof The following holds for the opinion z∗
i of any agent i at equilibrium z∗ :

z∗
i + z∗

i

∑

j �=i

wij = (1 + α/n)si +
∑

j �=i

wij z
∗
j − (α/n)avg(z∗) .

By summing up these inequalities for all agents i ∈ [n],
n avg(z∗) +

∑

i∈N

z∗
i

∑

j �=i

wij = (n + α)avg(s) +
∑

i∈N

∑

j �=i

wij z
∗
j − α avg(z∗) .

Since the game is symmetric with wij = wji for all i �= j ,
∑

i∈N

z∗
i

∑

j �=i

wij =
∑

i∈N

∑

j �=i

wij z
∗
j =

∑

i,j :i<j

wij (z
∗
i + z∗

j ) .

Therefore, we obtain that at the equilibrium z∗, (n + α)avg(z∗) = (n + α)avg(s),
which directly implies the proposition.

In the analysis of PoA, we use the following technical proposition repeatedly.

Proposition 2 For any γ, λ, μ ≥ 0 and x, z ∈ R such that λμ ≥ γ 2, 2γ xz ≤
λx2 + μz2.

Proof The claim holds trivially if xz < 0. In case where xz ≥ 0, the claim follows
from:

0 ≤ (
√

λx − √
μz)2 = λx2 + μz2 − 2

√
λμxz ≤ λx2 + μz2 − 2γ xz .

The last inequality holds because λμ ≥ γ 2 implies that −√
λμ ≤ −γ .
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Based on these properties, we show that the PoA of symmetric average-oriented
games tends to 9/8, which is the PoA of symmetric opinion formation games without
aggregation. The proof is based on the following technical (and more general) lemma:

Lemma 2 Let G be any symmetric average-oriented opinion formation game with n

agents, agent belief vector s and influence α ≥ 0. Then, for all x, z ∈ R
n such that

avg(z) = avg(s),

C(z) + (x − z)T C′(z) ≤ ν1C(x) + ν2C(z) ,

where ν1 = max{3/4 + μ, δ} and ν2 = max{1/3 + μ, 1 − δ + 2λ}, for all λ > 0 and
μ ∈ (0, 1) such that λμ ≥ α/n2 and for all δ > 0.

Proof We recall that the individual cost of each agent i with respect to opinions z is

Ci(z) = (si − zi)
2 +

∑

i �=j

wij (zi − zj )
2 + α(si − avg(z))2

and that the social cost is C(z) = ∑
i Ci(z). We divide agent’s i personal cost Ci(z)

into three parts Ci(z) = Fi(z) + Ii(z) + Ai(z), where Fi(z) = ∑
j �=i wij (zi −

zj )
2, Ii(z) = (zi − si)

2 and Ai(z) = (avg(z)− si)
2. Following this notation, we have

that:

F(z) =
∑

i∈N

Fi(z) =
∑

i∈N

∑

j �=i

wij (zi − zj )
2 = 2

∑

i,j :i<j

wij (zi − zj )
2

I (z) =
∑

i∈N

Ii(z) =
∑

i∈N

(zi − si)
2 = (z − s)T (z − s)

A(z) =
∑

i∈N

Ai(z) = α
∑

i∈N

(avg(z) − si)
2 = α(avg(z) − s)T (avg(z) − s) .

Consequently, the social cost can be written as C(z) = F(z) + I (z) + A(z). We
introduce

F ′(z) =
(

dF1(z)

dz1
, · · · ,

dFn(z)

dzn

)

I ′(z) =
(

dI1(z)

dz1
, · · · ,

dIn(z)

dzn

)

A′(z) =
(

dA1(z)

dz1
, · · · ,

dAn(z)

dzn

)

We observe that A′(z) = (2α/n)(avg(z)− s). For simplicity and brevity, here and
in the proof of Theorem 4, we slightly abuse the notation by letting avg(z) denote
a vector with all its coordinates equal to avg(z). The following two propositions are
proven in [4, Sec. 3.1] for more general cost functions. We provide their proofs here,
for the sake of completeness.

Proposition 3 [4] For any symmetric matrix W = (wij ), any z, x ∈ R
n, and any

λ > 0 and μ ∈ (0, 1) with λ ≥ 1/(4μ),

F(z) + (x − z)T F ′(z) ≤ λF(x) + μF(z)
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Proof To establish the proposition, we consider each agent pair i, j , with i �= j ,
separately. Since for any agent pair i, j , wij = wji , we have that for any λ > 0 and
μ ∈ (0, 1) with λμ ≥ 1/4,

F(z)+(x−z)T F ′(z)=2
∑

i,j :i �=j

wij ((zi −zj )
2+(xi −zi)(zi −zj )+(xj −zj )(zj −zi))

=2
∑

i,j :i �=j

wij ((zi − zj )
2+(xi − xj )(zi − zj )−(zi − zj )

2)

=2
∑

i,j :i �=j

wij (xi − xj )(zi − zj )

≤2λ
∑

i,j :i �=j

wij (xi − xj )
2 + 2μ

∑

i,j :i �=j

wij (zi − zj )
2

=λF(x) + μF(z) .

For the inequality, we apply Proposition 2 with γ = 1/2. Therefore, for any
xi, xj , zi, zj ∈ R and any λ,μ > 0 with λμ ≥ 1/4, (xi − xj )(zi − zj ) ≤
λ(xi − xj )

2 + μ(zi − zj )
2.

Proposition 4 [4] For any z, x, s ∈ R
n, λ > 0 and μ ∈ (0, 1) with λ ≥ 1/(μ + 1),

I (z) + (x − z)T I ′(z) ≤ λI (x) + μI (z)

Proof To establish the proposition, we consider each agent i separately. We have that
for any λ > 0 and μ ∈ (0, 1) such that λ(μ + 1) ≥ 1,

I (z) + (x − z)T I ′(z) =
∑

i∈N

((zi − si)
2 + 2(xi − zi)(zi − si))

=
∑

i∈N

((zi − si)
2 + 2(xi − si)(zi − si) + 2(si − zi)(zi − si))

=
∑

i∈N

((zi − si)
2 + 2(xi − si)(zi − si) − 2(zi − si)

2)

=
∑

i∈N

(2(xi − si)(zi − si) − (zi − si)
2)

≤ λ
∑

i∈N

(xi − si)
2 + μ

∑

i∈N

(zi − si)
2

= λI (x) + μI (z) .

For the inequality, we apply Proposition 2 with γ = 1 and μ + 1 instead of μ. Thus,
we obtain that for any xi, zi, si ∈ R and for any λ > 0 and μ ∈ (0, 1) such that
λ(μ + 1) ≥ 1, 2(xi − si)(zi − si) ≤ λ(xi − si)

2 + (μ + 1)(zi − si)
2, which implies

the inequality above.

Next, using Proposition 1, we obtain a similar upper bound on A(z) + (x −
z)T A′(z).
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Proposition 5 For any α > 0, any z, x, s ∈ R
n with avg(z) = avg(s), any δ ≥ 0,

and any λ > 0 and μ ∈ (0, 1) such that λμ ≥ α/n2,

A(z) + (x − z)T A′(z) ≤ δA(x) + μI (x) + (1 − δ + 2λ)A(z) + μI (z) . (9)

Proof Applying first-order optimality conditions, we obtain that any vector z ∈ R
n

with avg(z) = avg(s) minimizes A(z). Therefore, for any x ∈ R
n, A(z) ≤ A(x),

and for any δ ≥ 0, A(z) ≤ δA(x) + (1 − δ)A(z).
To complete the proof of (9), we observe that for any λ > 0, μ ∈ (0, 1) with

λμ ≥ α/n2,

(x − z)T A′(z) =
∑

i∈N

(2α/n)(xi − zi)(avg(z) − si)

=
∑

i∈N

((2α/n)(xi − si)(avg(z)−si)+(2α/n)(si −zi)(avg(z)−si))

≤
∑

i∈N

(2λα(avg(z) − si)
2 + μ(xi − si)

2 + μ(zi − si)
2)

= 2 λA(z) + μI (x) + μI (z) .

For the inequality, we apply Proposition 2, with γ = √
α/n, to (2α/n)(xi −

si)(avg(z) − si) and to (2α/n)(si − zi)(avg(z) − si). Hence, we obtain that for any
λ > 0 and μ ∈ (0, 1) such that λμ ≥ α/n2, (2α/n)(xi − si)(avg(z) − si) ≤
μ(xi − si)

2 + λα(avg(z) − si)
2 and (2α/n)(si − zi)(avg(z) − si) ≤ μ(zi − si)

2 +
λα(avg(z) − si)

2.

Applying Propositions 3 and 4 with λ = 3/4 and μ = 1/3, and using (9), we
obtain that for any δ ≥ 0 and for any λ > 0 and μ ∈ (0, 1) such that λμ ≥ α/n2,

C(z) + (x − z)T C′(z) ≤ 3

4
F(x) +

(
3

4
+ μ

)
I (x) + δA(x) + 1

3
F(z) +

(
1

3
+ μ

)
I (x) + (1 − δ + 2λ)A(x)

≤ ν1C(x) + ν2C(z) ,

where ν1 = max{3/4 + μ, δ} and ν2 = max{1/3 + μ, 1 − δ + 2λ}.

The main result of this section is an immediate consequence of Lemma 2.

Theorem 2 Let G be any symmetric average-oriented opinion formation game with
n agents and influence α ≥ 0. Then, PoA(G) ≤ 9/8 + O(α/n2).

Proof Let z be the equilibrium and let o be the optimal solution. By Proposition 1,
avg(z) = avg(s). Therefore, Lemma 2 implies that

C(z) + (o − z)T C′(z) ≤ ν1C(o) + ν2C(z) ,
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where ν1 = max{3/4 + μ, δ} and ν2 = max{1/3 + μ, 1 − δ + 2λ}, for all λ > 0
and μ ∈ (0, 1) such that λμ ≥ α/n2 and for all δ > 0. Since z is an equilibrium,
C′(z) = 0. Hence, for all ν2 ∈ (0, 1), PoA(G) ≤ ν1/(1 − ν2), or equivalently,

PoA(G) ≤ max{3/4 + μ, δ}
1 − max{1/3 + μ, 1 − δ + 2λ} . (10)

If α/n2 is small enough, e.g., if α/n2 ≤ 1/2400, we use δ = 3/4, λ = 1/24 and
μ = 24α/n2 in (10) and obtain that PoA(G) ≤ 9/8 + O( α

n2 ). Otherwise, we use

μ = 1/3, λ = 3α/n2 and δ = 6α/n2 + 1/3, and obtain that PoA(G) = O( α

n2 ).

5 Average-Oriented Games with Restricted Opinions

A frequent assumption in the literature on opinion formation is that agent beliefs
come from a finite interval of nonnegative real numbers. Then, by scaling we can
assume beliefs si ∈ [0, 1]. If the influence matrix A is nonnegative, then since
bii + ∑n

j=1 aij = 1 for all i ∈ [n], we have that the equilibrium opinions are

z∗ = (I − A)−1Bs ∈ [0, 1]n. In contrast, for the more general domain we treat here,
an important side-effect of negative influence is that the best-response (and equilib-
rium) opinions may not belong to [0, 1]. Motivated by this observation, we consider a
restricted variant of opinion formation games, where the (best-response and equilib-
rium) opinions are restricted to [0, 1]. We strive to understand how this restriction of
public opinions to [0, 1] affects the convergence properties and the price of anarchy
of average-oriented games.

To distinguish restricted opinion formation processes from their unrestricted
counterparts, we use y(t) to denote the opinion vectors restricted to [0, 1]n . For
restricted average-oriented games and restricted games with negative influence, the
best-response opinion yi of each agent i to y−i is again computed by (2) and (7),
respectively. But now, if the resulting value is yi < 0, we increase it to yi = 0, while
if yi > 1, we decrease it to yi = 1. Since the individual cost Ci(y) is a strictly con-
vex function of yi , the restriction of yi to [0, 1] results in a minimizer y∗ ∈ [0, 1] of
Ci(y, y−i ).

Similarly, the restricted opinion formation process is described by

y(t) = [Ay(t − 1) + Bs ][0,1] , (11)

where [·][0,1] denotes the restriction of public opinions y(t) to [0, 1]n described
above. The influence matrix A (and the influence matrices D and E for processes
with outdated information) and the self-confidence matrix B are computed as for
standard (or unrestricted) opinion formation processes.

5.1 Convergence of Restricted Opinion Formation Processes

We show results for restricted opinion formation processes that are equivalent to
Lemma 1 and Theorem 1. As in Section 3, we prove our results for the more general
setting of negative influence. Using Lemma 3 and Theorem 3, it is straightforward to
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obtain the results of Corollary 1 and Corollary 2 also for restricted average-oriented
processes.

Lemma 3 Let A be any influence matrix, possibly with negative elements, such that
‖A‖ ≤ 1−β, for some β > 0. Then, for any self-confidence matrix B, any s ∈ [0, 1]n
and any ε > 0, the opinion formation process y(t) = [Ay(t − 1) + Bs ][0,1] admits
a unique equilibrium y∗ and converges to it within distance ε in O(ln( 1

ε
)/β) rounds.

Proof In the restricted opinion formation game, the agent opinions lie in the convex
set [0, 1]. The individual cost Ci(y) of each agent i is a continuous function of y

and strictly convex in yi . Hence, according to the results of [19], the restricted game
admits a unique equilibrium y∗ which satisfies y∗ = [Ay∗ + Bs ][0,1] . Specifically,
the existence of an equilibrium y∗ follows from [19, Theorem 1], since the restricted
opinion formation game is a convex game. The uniqueness of y∗ follows from [19,
Theorem 2] and from the fact that the function

∑
i∈N Ci(y) is diagonally strictly

convex. The latter holds because the symmetric matrix obtained by adding 2B to the
Laplacian of A + AT is positive definite.

Next we bound the convergence time to y∗ as in the proof of Lemma 1. For any
t ≥ 1, we define e(t) = ‖y(t) − y∗‖ as the distance of the opinions at time t to
equilibrium. We observe that for any round t ≥ 1,

e(t) = ‖y(t) − y∗‖ ≤ ‖Ay(t − 1) + Bs − Ay∗ − Bs‖
≤ ‖A‖ ‖y(t − 1) − y∗‖ ≤ (1 − β)e(t − 1) ≤ (1 − β)t e(0) .

For the first inequality, we recall that y(t) (resp. y∗) is obtained by computing
Ay(t − 1)+Bs (resp. Ay∗ +Bs) and then restricting any negative opinions to 0 and
any opinions larger than 1 to 1. By a straightforward inspection of all possible 9 cases
depending on whether yi(t) and y∗

i are negative, in [0, 1] or greater than 1, we con-
clude that opinion restriction to [0, 1] does not increase |yi(t) − y∗

i | for any i. Since
y(0) = s ∈ [0, 1]n and y∗ ∈ [0, 1]n, e(0) ≤ 1. Hence, after t∗(ε) = O(ln( 1

ε
)/β)

rounds y(t) is within distance ε to y∗.

The proof of the following theorem is similar to the proof of Theorem 1.

Theorem 3 Let D and E be influence matrices, possibly with negative elements,
such that ‖D‖ ≤ 1 − β1, ‖E‖ ≤ 1 − β2, for some β1, β2 ∈ (0, 1) with β1 + β2 > 1.
Then, for any self-confidence matrix B, any s ∈ [0, 1]n, any update schedule 0 =
τ0 < τ1 < τ2 < · · · , the restricted opinion formation process y(t) = [Dy(t −
1) + Ey(τp) + Bs ][0,1] converges to the unique equilibrium point y∗ of y′(t) =
[(D + E)y′(t − 1) + Bs ][0,1]. For any ε > 0, y(t) is within distance ε to y∗ after
O(ln( 1

ε
)/β) epochs, where β = β1 + β2 − 1.

Proof Lemma 3 shows that for the restricted opinion formation process y′(t) =
[(D + E)y′(t − 1) + Bs ][0,1], there is a unique equilibrium point y∗ ∈ [0, 1]n
that satisfies y∗ = [(D + E)y∗ + Bs ][0,1] . Provided that it exists, the equilib-
rium of the restricted opinion formation process with outdated information y(t) =
[Dy(t − 1) + Ey(τp) + Bs ][0,1] must satisfy y∗ = [Dy∗ + Ey∗ + Bs ][0,1], due
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to the existence of infinite update points where all agents have accurate information
about the current public opinion vector. So, if the process with outdated information
admits an equilibrium, it must be unique and equal to y∗. We next show that this is
indeed the case, by bounding from above the distance of y(t) to y∗ by a decreasing
function of t and by establishing an upper bound on the convergence time.

For every round t ≥ 1, we define e(t) = ‖y(t)−y∗‖ as the distance of the opinions
at time t to y∗. We proceed similarly to the proof of Theorem 1. As before, we define

f (β1, β2, k) = (1 − β1)
k + (1 − β2)

1 − (1 − β1)
k

β1
.

We recall that for any fixed β1, β2 ∈ (0, 1) with β1 + β2 > 1, f (β1, β2, k) is a
decreasing function of k.

We next show that:

Claim (i). For every epoch p ≥ 0 and every round k, 0 ≤ k ≤ kp, in epoch p,

e(τp + k) ≤ f (β1, β2, k)e(τp) .

Claim (ii). In the last round τp+1 = τp + kp of each epoch p ≥ 0, e(τp+1) ≤
(1 − β)e(τp).

Claims (i) and (ii) imply that for each epoch p ≥ 0 and every round k, 0 ≤ k ≤ kp,
in epoch p, e(τp + k) ≤ f (β1, β2, k)(1 − β)pe(0). This immediately implies that
for any update schedule τ0 < τ1 < τ2 < · · · , the opinion formation process y(t) =
[Dy(t −1)+Ey(τp)+Bs ][0,1] converges to y∗. Moreover, since e(0) = ‖s−y∗‖ ≤
1, y(t) is within distance ε to y∗ in O(ln( 1

ε
)/β) epochs.

The proofs of Claim (i) and Claim (ii) are essentially identical to the proofs of the
corresponding claims in the proof of Theorem 1. We include the details for complete-
ness. To prove Claim (i), we fix an epoch p ≥ 0 and apply induction on k. The basis,
where k = 0, holds because f (β1, β2, 0) = 1. For any round k, with 1 ≤ k ≤ kp, in
p, we have that:

e(τp + k) = ‖y(τp + k) − y∗‖
= ‖[Dy(τp + k − 1) + Ey(τp) + Bs ][0,1] − [Dy∗ + Ey∗ + Bs ][0,1]‖
≤ ‖(Dy(τp + k − 1) + Ey(τp) + Bs) − (Dy∗ + Ey∗ + Bs)‖
≤ ‖D‖ ‖y(τp + k − 1) − y∗‖ + ‖E‖ ‖y(τp) − y∗‖
≤ (1 − β1)e(τp + k − 1) + (1 − β2)e(τp)

≤ (1 − β1)f (β1, β2, k − 1)e(τp) + (1 − β2)e(τp)

= f (β1, β2, k)e(τp) .

For the first inequality, we use that opinion restriction to [0, 1] does not increase
|yi(t) − y∗

i | for any i, as it is explained in the proof of Lemma 3. The sec-
ond inequality follows from the properties of matrix norms. The third inequality
holds because ‖D‖ ≤ 1 − β1 and ‖E‖ ≤ 1 − β2. The fourth inequality follows
from the induction hypothesis. Finally, we observe that for any integer k ≥ 1,
(1 − β1)f (β1, β2, k − 1) + 1 − β2 = f (β1, β2, k).
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To prove Claim (ii), we fix any epoch p ≥ 0 and apply claim (i) to the last round
τp+1 = τp + kp of epoch p, where kp ≥ 1. Hence, we obtain that:

e(τp+1)=‖y(τp+kp)−y∗‖≤f (β1, β2, kp)e(τp)≤(2−β1−β2)e(τp)=(1−β)e(τp),

where β = β1 + β2 − 1. The last inequality follows from convexity and has already
been proven in the corresponding part of the proof of Theorem 1.

5.2 The Price of Anarchy of Restricted Average-Oriented Games

We proceed to bound the PoA of restricted symmetric average-oriented games. Due
to opinion restriction to [0, 1], the average opinion at equilibrium may be far from
avg(s). Therefore, we cannot rely on Proposition 5 anymore. Moreover, the PoA of
restricted games increases fast with α (e.g., if s = (0, . . . , 0, 1/n), wij = 0 for all
i �= j , and α = n2, PoA = �(n)). Therefore, we here restrict our attention to the
case where α = w = 1 and show that the PoA of restricted symmetric average-
oriented games remains constant. An interesting intermediate result of our analysis
is that if all agents only value the distance of their opinion to their belief and to the
average, i.e., if wij = 0 for all i �= j , the PoA of such games is at most 1 + 1/n2.

As in the proofs of Lemma 2 and Theorem 2, we use a generalized local smooth-
ness argument. In this case, however, the function

∑n
i=1(avg(y) − si)

2 is not
(λ, μ)-locally smooth and avg(y∗) at the equilibrium y∗ may be far from avg(s).
Hence, to bound the PoA, we need to advance substantially beyond the local smooth-
ness argument of [4, Sec. 3.1]. The rest of this section is devoted to the proof of the
following:

Theorem 4 Let G be any symmetric average-oriented opinion formation game with
w = α = 1, n ≥ 2 agents and opinions restricted to [0, 1]. Then, PoA(G) ≤ 3 +√

2 + O( 1
n
).

Proof As in the proofs of Lemma 2 and Theorem 2, we seek to find appropriate
parameters λ > 0 and μ ∈ (0, 1) such that for all x, y ∈ [0, 1]n,

C(y) + (x − y)T C′(y) ≤ λC(x) + μC(y) . (12)

where C′(y) = (
dC1(y)

dy1
, · · · ,

dCn(y)
dyn

).
Next, we show that (12) indeed implies PoA(G) ≤ λ/(1−μ). To this end, we show

that at the equilibrium y∗ of a restricted game, (x − y∗)T C′(y∗) ≥ 0. By definition
y∗ ∈ [0, 1]n. In case where y∗

i ∈ (0, 1), due to first-order optimality conditions,
dCi(y

∗)
dyi

= 0 and (xi −y∗
i )

dCi(y
∗)

dyi
= 0. If y∗

i = 0 then dCi(y
∗)

dyi
≥ 0. Otherwise, agent i

could decrease her cost by increasing y∗
i . Since xi ∈ [0, 1], (xi−y∗

i )
dCi(y

∗)
dyi

≥ 0. By a

symmetric argument, if y∗
i = 1, dCi(y

∗)
dyi

≤ 0 and (xi −y∗
i )

dCi(y
∗)

dyi
≥ 0. Applying (12)

for y = y∗ and x = o∗ (we recall that the optimal solution o∗ ∈ [0, 1]n) yields

C(y∗) ≤ C(y∗) + (o∗ − y∗)T C′(y∗) ≤ λC(o∗) + μC(y∗) .

Therefore, PoA(G) = C(y∗)/C(o∗) ≤ λ/(1 − μ).
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We proceed to establish (12). As in Section 4, in order to find appropriate values
for λ and μ, we divide the individual cost of each agent i into two parts, writing
Ci(y) = Fi(y) + Mi(y), and analyze each part separately. We again have that:

F(y) =
n∑

i=1

Fi(y) =
∑

i∈N

∑

j �=i

wij (yi − yj )
2

M(y) =
n∑

i=1

Mi(y) =
∑

i∈N

((yi − si)
2 + (avg(y) − si)

2)

= (y − s)T (y − s) + (avg(y) − s)T (avg(y) − s) .

We again denote

F ′(y) =
(

dF1(y)

dy1
, · · · ,

dFn(y)

dyn

)

M ′(y) =
(

dM1(y)

dy1
, · · · ,

dMn(y)

dyn

)

We also recall that M ′(y) = 2(y − s) + (2/n)(avg(y) − s).
Proposition 3 provides an appropriate upper bound on the term F(y) + (x −

y)T F ′(y). So, we next focus on finding appropriate values of λ and μ so that we can
bound from above the term M(y) + (x − y)T M ′(y).

To this end, we first observe that:

M(y) + (x − y)T M ′(y) = M(y) + (s − y)T M ′(y) + (x − s)T M ′(y) .

We first bound M(y) + (s − y)T M ′(y) from above using the following proposi-
tion. Intuitively, the proposition holds because the left-hand side of (13) is a strictly
concave function of y.

Proposition 6 For any y, x, s ∈ [0, 1]n,

M(y) + (s − y)T M ′(y) ≤ (1 + 1

n2
)M(s) ≤ (1 + 1

n2
)M(x) . (13)

Proof Let Kn denote the n × n matrix with all its entries equal to 1/n. Recall that I
is the n × n identity matrix. Clearly, Kny is the vector with all its coordinates equal
to avg(y). Moreover, we observe that KnKn = Kn. Using matrix notation, we obtain
that:

M(y) + (s − y)T M ′(y) = (Kny − s)T (Kny − s) + (y − s)T (y − s)

+2(s − y)T (y − s) + (2/n)(s − y)T (Kny − s)

= yT ((1 − 2

n
)Kn − I)y + 2 yT ((1 + 1

n
)I − (1 − 1

n
)Kn)s

−2

n
sT s .
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We observe that the matrix I − (1 − 2
n
)Kn is strictly diagonally dominant, and thus

positive definite. So, the matrix (1 − 2
n
)Kn − I is negative definite. Thus, M(y) +

(s − y)T M ′(y) is strictly concave in y and has a unique maximum in R.
We next show that M(y) + (s − y)T M ′(y) is maximized at y∗ = (1 + 1

n
)s −

avg(s)/n. To find the unique maximizer y∗ of M(y)+(s−y)T M ′(y), we apply first-
order optimality conditions. The gradient of M(y) + (s − y)T M ′(y) with respect to
y1, . . . , yn is equal to

2((1 − 2

n
)Kn − I)y + 2((1 + 1

n
)I − (1 − 1

n
)Kn)s .

So the unique maximizer y∗ of M(y) + (s − y)T M ′(y) satisfies

y∗
i = (1 + 1

n
)si + (1 − 2

n
)avg(y∗) − (1 − 1

n
)avg(s) .

Summing up these equations for all i ∈ N , we obtain that

n avg(y∗) = (n + 1)avg(s) + (n − 2)avg(y∗) − (n − 1)avg(s) ,

which implies that avg(y∗) = avg(s). Therefore, the maximizer y∗ of M(y) + (s −
y)T M ′(y) has y∗

i = (1 + 1
n
)si − avg(s)/n (note in particular that y∗

i does not need
to belong to [0, 1]).

Using that y∗ = (1 + 1
n
)s − avg(s)/n and avg(y∗) = avg(s), we obtain:

M(y∗) + (s − y∗)T M ′(y∗) = −(y∗ − s)T (y∗ − s) + (avg(s) − s)T (avg(s) − s)

+(2/n)(y∗ − s)T (avg(s) − s)T

= −(1/n2)(avg(s) − s)T (avg(s) − s)

+(avg(s) − s)T (avg(s) − s)

+(2/n2)(avg(s) − s)T (avg(s) − s)T

= (1 + 1

n2
)(avg(s) − s)T (avg(s) − s) .

The proposition follows from the following observations: (i) for any y ∈ [0, 1]n,
M(y) + (s − y)T M ′(y) ≤ M(y∗) + (s − y∗)T M ′(y∗), since y∗ ∈ R

n is the unique
maximizer of the strictly concave function M(y) + (s − y)T M ′(y); and (ii) for any
x ∈ [0, 1]n,

M(y∗) + (s − y∗)T M ′(y∗) = (1 + 1

n2
)(avg(s) − s)T (avg(s) − s)

= (1 + 1

n2
)M(s) ≤ (1 + 1

n2
)M(x) ,

where the last inequality holds because s is a minimizer of M(y).

Remark 1 If wij = 0 for all i �= j , the cost of each agent i becomes Ci(y) =
(yi − si)

2 + (avg(y)−yi)
2. For this interesting class of restricted symmetric average-

oriented games, Proposition 6 implies that the PoA is at most 1 + 1/n2.

We proceed to show an upper bound on (x − s)T M ′(y).
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Proposition 7 For any y, x, s ∈ [0, 1]n, and for any λ1, λ2 > 0 and μ1, μ2 ∈ (0, 1)

such that λ1μ1 ≥ 1 and λ2μ2 ≥ 1/n2,

(x − s)T M ′(y) ≤ (λ1 + λ2)M(x) + max{μ1, μ2}M(y) . (14)

Proof We observe that

(x − s)T M ′(y) = 2(x − s)T (y − s) + (2/n)(x − s)T (avg(y) − s) .

Applying Proposition 2, with γ = 1, for each term 2(xi − si)(yi − si) of 2(x −
s)T (y − s), we obtain that for any λ1 > 0 and μ1 ∈ (0, 1) with λ1μ1 ≥ 1,

2(x − s)T (y − s) ≤ λ1(x − s)T (x − s) + μ1(y − s)T (y − s) .

Similarly, applying Proposition 2, with γ = 1/n, for each term (2/n)(xi −
si)(avg(y) − si) of (2/n)(x − s)T (avg(y) − s), we obtain that for any λ2 > 0 and
μ2 ∈ (0, 1) with λ2μ2 ≥ 1/n2,

(2/n)(x − s)T (avg(y) − s) ≤ λ2(x − s)T (x − s) + μ2(avg(y) − s)T (avg(y) − s) .

Inequality (14) follows from summing up the two inequalities above and using that
M(x) ≥ (x−s)T (x−s) and that M(y) = (y−s)T (y−s)+(avg(y)−s)T (avg(y)−
s).

Using Proposition 6 and Proposition 7, we obtain that for all x, y ∈ [0, 1]n, and
for all λ1, λ2 > 0 and μ1, μ2 ∈ (0, 1) such that λ1μ1 ≥ 1 and λ2μ2 ≥ 1/n2,

M(y)+ (x −y)T M ′(y) ≤
(

1 + 1

n2
+ λ1 + λ2

)
M(x)+max{μ1, μ2}M(y) . (15)

Applying Proposition 3 with λ = 1 and μ = √
2 − 1, and (15) with λ1 = √

2 +
1, λ2 = 1/n, μ1 = √

2 − 1 and μ2 = 1/n, and summing up the corresponding
inequalities, we obtain that (12) holds with λ = 2 + √

2 + n+1
n2 and μ = √

2 − 1.
Hence, we conclude that

PoA ≤ (2 + √
2)2/2 + (

√
2 + 1)

n + 1

n2
.
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5. Bilȯ, V., Fanelli, A., Moscardelli, L.: Opinion formation games with dynamic social influences. In:
Proc. of the 12th Conference on Internet and Network Economics (WINE ’16), volume 10123 of
LNCS, pp. 444–458 (2016)

6. Bindel, D., Kleinberg, J.M., Oren, S.: How bad is forming your own opinion? In: Proc. of the 52nd
IEEE Symposium on Foundations of Computer Science (FOCS ’11), pp. 57–66 (2011)

7. Chazelle, B., Wang, C.: Inertial Hegselmann-Krause systems. IEEE Trans. Autom. Control 62, 3905–
3913 (2017)

8. Chen, P.-A., Chen, Y.-L., Lu, C.-J.: Bounds on the price of anarchy for a more general class of directed
graphs in opinion formation games. Oper. Res. Lett. 44(6), 808–811 (2016)

9. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)
10. Ferraioli, D., Goldberg, P., Ventre, C.: Decentralized dynamics for finite opinion games. Theor.

Comput. Sci. 648, 96–115 (2016)
11. Fotouhi, B., Rabbat, M.G.: The effect of exogenous inputs and defiant agents on opinion dynamics

with local and global interactions. IEEE J. Selected Topics Signal Process. 7(2), 347–357 (2013)
12. Friedkin, N.E., Johnsen, E.C.: Social influence and opinions. J. Math. Sociol. 15(3-4), 193–205 (1990)
13. Ghaderi, J., Srikant, R.: Opinion dynamics in social networks with stubborn agents: equilibrium and

convergence rate. Automatica 50, 3209–3215 (2014)
14. Golub, B., Jackson, M.O.: Naı̈. Am. Econ. J. Microecon. 2(1), 112–149 (2010)
15. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence models, analysis, and

simulation. J. Artif. Societ. Soc. Simul, 5 (2002)
16. Jackson, M.O.: Social and Economic Networks. Princeton University Press (2008)
17. Moulin, H.: On strategy-proofness and single-peakedness. Public Choice 35, 437–455 (1980)
18. Quattrociocchi, W., Caldarelli, G., Scala, A.: Opinion dynamics on interacting networks: media

competition and social influence. Sci. Rep. 4, 4938 (2014)
19. Rosen, J.B.: Existence and uniqueness of equilibrium points in concave n-person games. Economet-

rica 33, 520–534 (1965)
20. Roughgarden, T., Schoppmann, F.: Local smoothness and the price of anarchy in splittable congestion

games. J. Econ. Theory 156, 317–342 (2015)
21. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with

stubborn agents. ACM Trans. Econ. Comput. 1(4), 19,1–19,30 (2013)

Affiliations

Markos Epitropou1 ·Dimitris Fotakis2,3 ·Martin Hoefer4 ·Stratis Skoulakis3

Markos Epitropou
mep@seas.upenn.edu

Dimitris Fotakis
dfotakis@oath.com; fotakis@cs.ntua.gr

Martin Hoefer
mmhoefer@cs.uni-frankfurt.de

1 Department of Electrical and Systems Engineering, University of Pennsylvania,
Philadelphia, PA, USA

2 Yahoo Research, New York, NY, USA
3 School of Electrical and Computer Engineering, National Technical University of Athens,

Athens, Greece
4 Institut für Informatik, Goethe-Universität Frankfurt am Main, Frankfurt, Germany

http://orcid.org/0000-0001-6864-8960
mailto: mep@seas.upenn.edu
mailto: dfotakis@oath.com
mailto: fotakis@cs.ntua.gr
mailto: mmhoefer@cs.uni-frankfurt.de

	Opinion Formation Games with Aggregation and Negative Influence
	Abstract
	Abstract
	Introduction
	Motivation and Opinion Formation Model
	Contribution
	Further Related Work

	Model and Preliminaries
	Average-Oriented Opinion Formation
	Average-Oriented Opinion Formation with Outdated Information
	Opinion Formation with Negative Influence

	Convergence of Average-Oriented Opinion Formation
	Convergence with Outdated Information

	The Price of Anarchy of Symmetric Average-Oriented Games
	Average-Oriented Games with Restricted Opinions
	Convergence of Restricted Opinion Formation Processes
	The Price of Anarchy of Restricted Average-Oriented Games

	References
	Affiliations


