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Abstract. We study opinion formation games based on the famous model proposed by Friedkin and
Johsen (FJ model). In today’s huge social networks the assumption that in each round agents update
their opinions by taking into account the opinions of all their friends is unrealistic. So, we are interested
in the convergence properties of simple and natural variants of the FJ model that use limited information
exchange in each round and converge to the same stable point. As in the FJ model, we assume that
each agent i has an intrinsic opinion si ∈ [0, 1] and maintains an expressed opinion xi(t) ∈ [0, 1] in
each round t. To model limited information exchange, we consider an opinion formation process where
each agent i meets with one random friend j at each round t and learns only her current opinion xj(t).
The amount of influence j imposes on i is reflected by the probability pij with which i meets j. Then,
agent i suffers a disagreement cost that is a convex combination of (xi(t)− si)2 and (xi(t)− xj(t))2. An
important class of dynamics in this setting are no regret dynamics, i.e. dynamics that ensure vanishing
regret against the experienced disagreement cost to the agents. We show an exponential gap between
the convergence rate of no regret dynamics and of more general dynamics that do not ensure no regret.
We prove that no regret dynamics require roughly Ω(1/ε) rounds to be within distance ε from the
stable point of the FJ model. On the other hand, we provide an opinion update rule that does not
ensure no regret and converges to x∗ in Õ(log2(1/ε)) rounds. Finally, in our variant of the FJ model, we
show that the agents can adopt a simple opinion update rule that ensures no regret to the experienced
disagreement cost and results in an opinion vector that converges to the stable point x∗ of the FJ model
within distance ε in poly(1/ε) rounds. In view of our lower bound for no regret dynamics this rate of
convergence is close to best possible.

1 Introduction

The study of Opinion Formation has a long history (see e.g. [Jac08]). Opinion Formation is a
dynamic process in the sense that socially connected people (e.g. family, friends, colleagues) exchange
information and this leads to changes in their expressed opinions over time. Today, the advent
of the internet and social media makes the study of opinion formation in large social networks
even more important; realistic models of how people form their opinions by interacting with each
other are of great practical interest for prediction, advertisement etc. In an attempt to formalize
the process of opinion formation, several models have been proposed over the years (see e.g.,
[DeG74,FJ90,HK02,DNAW00]). The common assumption underlying all these models, which dates
back to DeGroot [DeG74], is that opinions evolve through a form of repeated averaging of information
collected from the agents’ social neighborhoods.

Our work builds on the model proposed by Friedkin and Johnsen [FJ90]. The FJ model is a
variation on the DeGroot model capturing the fact that consensus on the opinions is rarely reached.
According to FJ model each person i has a public opinion xi ∈ [0, 1] and an internal opinion
si ∈ [0, 1], which is private and invariant over time. There also exists a weighted graph G(V,E)
representing a social network where V stands for the persons (|V | = n) and E their social relations.
Initially, all nodes start with their internal opinion and at each round t, update their public opinion
xi(t) to a weighted average of the public opinions of their neighbors and their internal opinion,

xi(t) =
∑
j∈Ni wijxj(t− 1) + wiisi∑

j∈Ni wij + wii
, (1)
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where Ni = {j ∈ V : (i, j) ∈ E} is the set of i’s neighbors, the weight wij associated with the edge
(i, j) ∈ E measures the extent of the influence that j poses on i and the weight wii > 0 quantifies
how susceptible i is in adopting opinions that differ from her internal opinion si.

The FJ model is one of most influential models for opinion formation. It has a very simple update
rule, making it plausible for modeling natural behavior and its basic assumptions are aligned with
empirical findings on the way opinions are formed [AFH+05,Kra09]. At the same time, it admits
a unique stable point x∗ ∈ [0, 1]n to which it converges with a linear rate [GS14]. The FJ model
has also been studied under a game theoretic viewpoint. Bindel et al. considered its update rule as
the minimizer of a quadratic disagreement cost function and based on it they defined the following
opinion formation game [BKO11]. Each node i is a selfish agent whose strategy is the public opinion
xi that she expresses incurring her a disagreement cost

Ci(xi, x−i) =
∑
j∈Ni

wij(xi − xj)2 + wii(xi − si)2 (2)

Note that the FJ model is the simultaneous best response dynamics and its stable point x∗ is
the unique Nash equilibrium of the above game. In [BKO11] they quantified its inefficiency with
respect to the total disagreement cost. They proved that the Price of Anarchy (PoA) is 9/8 in
case G is undirected and wij = wji. They also provided PoA bounds in the case of unweighted
Eulerian directed graphs. We remark that in [BKO11] an alternative framework for studying the way
opinions evolve was introduced. The opinion formation process can be described as the dynamics of
an opinion formation game. This framework is much more comprehensive since different aspects
of the opinion formation process can be easily captured by defining suitable games. Subsequent
works [BGM13,BFM16,EFHS17] considered variants of the above game and studied the convergence
properties of the best response dynamics.

1.1 Motivation and our setting

Many recent works study the Nash equilibrium x∗ of the opinion formation game defined in
[BKO11] under various perspectives. In [CCL16] they extended the bounds for PoA in more
general classes of directed graphs, while many recently introduced influence maximization problems
[GTT13,AKPT18,MMT17], which are defined with respect to x∗. The reason for this scientific
interest is evident: the equilibrium x∗ is considered as an appropriate way to model the final opinions
formed in a social network, since the well established FJ model converges to it.

Our work is motivated by the fact that there are notable cases in which the FJ model is not
an appropriate model for the dynamic of the opinions, due to the large amount of information
exchange that it implies. More precisely, at each round its update rule (1) requires that every agent
learns all the opinions of her social neighbors. In today’s large social networks where users usually
have several hundreds of friends it is highly unlikely that, each day, they learn the opinions of all
their social neighbors. In such environments it is far more reasonable to assume that individuals
randomly meet a small subset of their acquaintances and these are the only opinions that they learn.
Such information exchange constraints render the FJ model unsuitable for modeling the opinion
formation process in such large networks and therefore, it is not clear whether x∗ captures the
limiting behavior of the opinions. In this work we ask:

Question 1. Is the equilibrium x∗ an adequate way to model the final formed opinions in large
social networks? Namely, are there simple variants of the FJ model that require limited information
exchange and converge fast to x∗? Can they be justified as natural behavior for selfish agents under
a game-theoretic solution concept?
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To address these questions, one could define precise dynamical processes whose update rules
require limited information exchange between the agents and study their convergence properties.
Instead of doing so, we describe the opinion formation process in such large networks as dynamics
of a suitable opinion formation game that captures these information exchange constraints. This
way we can precisely define which dynamics are natural and, more importantly, to study general
classes of dynamics (e.g. no regret dynamics) without explicitly defining their update rule. The
opinion formation game that we consider is a variant of the game in [BKO11] based on interpreting
the weight wij as a measure of how frequently i meets j.

Definition 1. For a given opinion vector x ∈ [0, 1]n, the disagreement cost of agent i is the random
variable Ci(xi, x−i) defined as follows:

– Agent i meets one of her neighbors j with probability pij = wij/
∑
j∈Ni wij.

– Agent i suffers cost Ci(xi, x−i) = (1−ai)(xi−xj)2+ai(xi−si)2, where αi = wii/(
∑
j∈Ni wij+wii).

Note that the expected disagreement cost of each agent in the above game is the same as the
disagreement cost in [BKO11] (scaled by

∑
j∈Ni wij + wii). Moreover its Nash equilibrium, with

respect to the expected disagreement cost, is x∗. This game provides us with a general template
of all the dynamics examined in this paper. At round t, each agent i selects an opinion xi(t) and
suffers a disagreement cost based on the opinion of the neighbor that she randomly met. At the
end of round t, she is informed only about the opinion and the index of this neighbor and may use
this information to update her opinion in the next round. Obviously different update rules lead
to different dynamics, however all of these respect the information exchange constraints: at every
round each agent learns the opinion of just one of her neighbors. Question 1 now takes the following
more concrete form.

Question 2. Can the agents update their opinions according to the limited information that they
receive such that the produced opinion vector x(t) converges to the equilibrium x∗? How is the
convergence rate affected by the limited information exchange? Are there dynamics that ensure
that the cost that the agents experience is minimal?

In what follows, we are mostly concerned about the dependence of the rate of convergence on
the distance ε from the equilibrium x∗. Thus, we shall suppress the dependence on other parameters
such as the size of the graph, n. We remark that the dependence of our dynamics on these constants
is in fact rather good (see Section 2), and we do this only for clarity of exposition.

Definition 2 (Informal). We say that a dynamics converges slowly resp. fast to the equilibrium
x∗ if it requires poly(1/ε) resp. poly(log(1/ε)) rounds to be within (expected) error ε of x∗.

1.2 Contribution

The major contribution of the paper is proving an exponential separation on the convergence rate
of no regret dynamics and the convergence rate of more general dynamics produced by update rules
that do not ensure no regret.

No regret dynamics are produced by update rules that ensure no regret to any agent that adopts
them. Namely, the total disagreement cost of an agent that follows such a rule is close to the total
disagreement cost that she would experience by selecting the best fixed opinion in hindsight. The
latter must hold regardless of the way the other agents update their opinions and of the neighbors
that the agent gets to meet. This powerful property renders no regret dynamics natural dynamics for
describing the behavior of agents [CBL03,EMN09,KPT11,SALS15]. We prove that if all the agents
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adopt an update rule that ensures no regret, then there exists an instance of the game such that the
produced opinion vector x(t) requires roughly Ω(1/ε) rounds to be ε-close to x∗. No regret comes
at the price of slow convergence because it provides robust guarantees. Agents who adopt no regret
update rules suffer minimal total disagreement cost even if the other agents play irrationally or
adversarially. In order to provide such strong guarantees, no regret rules must only depend on the
opinions that the agent observes and not take into account the weights wij of the outgoing edges
(see Section 5). We call the update rules with the latter property, graph oblivious. In Section 5 we
use a novel information theoretic argument to prove the aforementioned lower bound for this more
general class.

In Section 6, we present a simple update rule whose resulting dynamics converges fast, i.e. the
opinion vector x(t) is ε-close to x∗ in O(log2(1/ε)) rounds. The reason that the previous lower bound
doesn’t apply is that this rule does not ensure no regret to the agents that adopt it. In fact there is
a very simple example with two agents, in which the first follows the rule while the second selects
her opinions adversarially, where the first agent experiences regret (see Example 1 in Appendix C).

We introduce an intuitive no regret update rule and we show that if all agents adopt it, the
resulting opinion vector x(t) converges to x∗. Our rule is a Follow the Leader algorithm, meaning
that at round t, each agent updates her opinion to the minimizer of total disagreement cost that she
experienced until round t− 1. It also has a very simple form: it is roughly the time average of the
opinions that the agent observes. In Section 3, we bound its convergence rate and show that in order
to achieve ε distance from x∗, poly(1/ε) rounds are sufficient. In view of our lower bound this rate
is close to best possible. In Section 4, we prove its no regret property. This can be derived by the
more general results in [HAK07]. However, we give a short and simple proof that may be of interest.

In conclusion, our results reveal that the equilibrium x∗ is a robust choice for modeling the
limiting behavior of the opinions of agents since, even in our limited information setting, there
exist simple and natural dynamics that converge to it. The convergence rate crucially depends on
whether the agents act selfishly, i.e. they are only concerned about their individual disagreement
cost. We present an update rule that selfish agents can adopt (no regret update rule) and show that
the resulting opinion vector converges to x∗ but with a slow rate, while, for non selfish agents, the
update rule in Section 6 leads to a dynamics with fast convergence rate.

1.3 Related Work

There exists a large amount of literature concerning the FJ model. Many recent works [BGM13,CKO13],
[BFM16,EFHS17] bound the inefficiency of equilibrium in variants of opinion formation game defined
in [BKO11]. In [GS14] they bound the convergence time of the FJ model in special graph topologies.
In [BFM16], a variant of the opinion formation game, in which social relations depend on the
expressed opinions, is studied. They prove that the discretized version of the above game admits a
potential function and thus best-response converges to the Nash equilibrium. Convergence results
in other discretized variants of the FJ model can be found in [YOA+13,FGV16]. In [FPS16] they
provide convergence results for limited information variants of the Heglesmann-Krause model [HK02]
and the FJ model. Although the considered limited information variant of the FJ model is very
similar to ours, their convergence results are much weaker, since they concern the expected value of
the opinion vector.

Other works that relate to ours concern the convergence properties of dynamics based on no
regret learning algorithms. In [FV97,FS99,SA00,SALS15] it is proved that in a finite n-person game,
if each agent updates her mixed strategy according to a no regret algorithm, the resulting time-
averaged strategy vector converges to Coarse Correlated Equilibrium. The convergence properties
of no regret dynamics for games with infinite strategy spaces were considered in [EMN09]. They
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proved that for a large class of games with concave utility functions (socially concave games),
the time-averaged strategy vector converges to Pure Nash Equilibrium (PNE). More recent work
investigates a stronger notion of convergence of no regret dynamics. In [CHM17] they show that, in
n-person finite generic games that admit unique Nash equilibrium, the strategy vector converges
locally and fast to it. They also provide conditions for global convergence. Our results fit in this line
of research since we show that for a game with infinite strategy space, the strategy vector (and not
the time-averaged) converges to the Nash equilibrium x∗.

No regret dynamics in limited information settings have recently received substantial attention
from the scientific community since they provide realistic models for the practical applications
of game theory. Perfect payoff information is rare in practice; agents act based on random or
noisy past-payoff observations. Kleinberg et al. in [KPT09] treated load-balancing in distributed
systems as a repeated game and analyzed the convergence properties of no regret learning algorithms
under the full information assumption that each agent learns the load of every machine. In a
subsequent work [KPT11], the same authors consider the same problem in a limited information
setting (“bulletin board model”), in which each agent learns the load of just the machine that served
him. Most relevant to ours are the works [HCM17,MS17,BM17,CHM17], where they examine the
convergence properties of no regret learning algorithms when the agents observe their payoffs with
some additive zero-mean random noise. In our limited information setting the agents experience
random disagreement cost with expected value equal to the actual cost. The main difference is that
our noise is not additive but due to a sampling process.

2 Our Results and Techniques

As previously mentioned, an instance of the game in [BKO11] is also an instance of the game of
Definition 1. Following the notation introduced earlier we have that pij = wij/

∑
j∈Ni wij if j ∈ Ni

and 0 otherwise. Moreover, αi = wii/(
∑
j∈Ni wij + wii) > 0 since wii > 0 by the definition of the

game in [BKO11]. If an agent i does not have outgoing edges (Ni = ∅) then pij = 0 for all j.
Therefore

∑n
j=1 pij = 0, αi = 1 if Ni = ∅ and

∑n
j=1 pij = 1, αi ∈ (0, 1) otherwise. For simplicity we

adopt the following notation for an instance of the game of Definition 1.

Definition 3. We denote an instance of the opinion formation game of Definition 1 as I = (P, s, α),
where P is a n× n matrix with non-negative elements pij, with pii = 0 and

∑n
j=1 pij is either 0 or

1, s ∈ [0, 1]n is the internal opinion vector, α ∈ (0, 1]n the self confidence vector.

An instance I = (P, s, α) is also an instance of the FJ model, since by the update rule (1)
xi(t) = (1− αi)

∑
j∈Ni pijxj(t− 1) + aisi. It also defines the opinion vector x∗ ∈ [0, 1]n which is the

stable point of the FJ model and the Nash equilibrium of the game in [BKO11].

Definition 4. For a given instance I = (P, s, α) the equilibrium x∗ ∈ [0, 1]n is the unique solution
of the following linear system, for every i ∈ V , x∗i = (1− αi)

∑
j∈Ni pijx

∗
j + aisi.

The fact that the above linear system always admits a solution follows by matrix norm properties.
Throughout the paper we study dynamics of the game of Definition 1. We denote as W t

i the neighbor
that agent i met at round t, which is a random variable whose probability distribution is determined
by the instance I = (P, s, α) of the game, P

[
W t
i = j

]
= pij . Another parameter of an instance I

that we often use is ρ = mini∈V αi.
In Section 3, we examine the convergence properties of the opinion vector x(t) when all agents

update their opinions according to the Follow the Leader principle. Since each agent i must select
xi(t), before knowing which of her neighbors she will meet and what opinion her neighbor will
express, this update rule says “play the best according to what you have observed”. For a given
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instance (P, s, a) of the game the Follow the Leader dynamics x(t) is defined in Dynamics 1 and
Theorem 1 shows its convergence rate to x∗.

Dynamics 1 Follow the Leader dynamics
1: Initially xi(0) = si for all agents i.
2: At round t ≥ 0 each agent i:

3: Meets neighbor with index W t
i , P

[
W t
i = j

]
= pij .

4: Suffers cost (1− αi)(xi(t)− xW t
i
(t))2 + ai(xi(t)− si)2 and learns the opinion xW t

i
(t).

5: Updates her opinion xi(t+ 1) = argminx∈[0,1]
∑t

τ=0(1− αi)(x− xWτ
i

(τ))2 + αi(x− si)2 (3)

Theorem 1. Let I = (P, s, α) be an instance of the opinion formation game of Definition 1 with
equilibrium x∗ ∈ [0, 1]n. The opinion vector x(t) ∈ [0, 1]n produced by update rule (3) after t rounds
satisfies

E [‖x(t)− x∗‖∞] ≤ C
√

logn (log t)3/2

tmin(1/2,ρ) ,

where ρ = mini∈V ai and C is a universal constant.

In Section 4 we argue that, apart from its simplicity, update rule (3) ensures no regret to any agent
that adopts it and therefore the FTL dynamics can be considered as natural dynamics for selfish
agents. Since each agent i selfishly wants to minimize the disagreement cost that she experiences, it
is natural to assume that she selects xi(t) according to a no regret algorithm for the online convex
optimization problem where the adversary chooses a function ft(x) = (1− αi)(x− bt)2 + αi(x− si)2

at each round t. In Theorem 2 we prove that Follow the Leader is a no regret algorithm for the
above OCO problem. We remark that this does not hold, if the adversary can pick functions from a
different class (see e.g. chapter 5 in [Haz16]).

Theorem 2. Consider the function f : [0, 1]2 7→ [0, 1] with f(x, b) = (1 − α)(x − b)2 + α(x − s)2

for some constants s, α ∈ [0, 1]. Let (bt)∞t=0 be an arbitrary sequence with bt ∈ [0, 1]. If xt =
argminx∈[0,1]

∑t−1
τ=0 f(x,bτ ) then for all t,

∑t
τ=0 f(xτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ) +O (log t) .

On the positive side, the FTL dynamics converges to x∗ and its update rule is simple and ensures
no regret to the agents. On the negative side, its convergence rate is outperformed by the rate of FJ
model. For a fixed instance I = (P, s, α), the FTL dynamics converges with rate Õ(1/tmin(ρ,1/2))
while FJ model converges with rate O(e−ρt) [GS14].

Question 3. Can the agents adopt other no regret update rules such that the resulting dynamics
converges fast to x∗?

The answer is no. In Section 5, we prove that fast convergence cannot be established for any no
regret dynamics. The reason that FTL dynamics converges slowly is that rule (3) only depends on
the opinions of the neighbors that agent i meets, αi, and si. This is also true for any update rule
that ensures no regret to the agents (see Section 5). As already mentioned, we call this larger class
of update rules graph oblivious, and we prove that fast convergence cannot be established for graph
oblivious dynamics.

Definition 5 (graph oblivious update rule). A graph oblivious update rule A is a sequence of
functions (At)∞t=0 where At : [0, 1]t+2 7→ [0, 1].
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Definition 6 (graph oblivious dynamics). Let a graph oblivious update rule A. For a given
instance I = (P, s, α) the rule A produces a graph oblivious dynamics xA(t) defined as follows:
– Initially each agent i selects her opinion xAi (0) = A0(si, αi)
– At round t ≥ 1, each agent i selects her opinion xAi (t) = At(xW 0

i
(0), . . . , xW t−1

i
(t − 1), si, αi),

where W t
i is the neighbors that i meets at round t.

Theorem 3 states that for any graph oblivious dynamics there exists an instance I = (P, s, α), where
roughly Ω(1/ε) rounds are required to achieve convergence within error ε.
Theorem 3. Let A be a graph oblivious update rule, which all agents use to update their opinions.
For any c > 0 there exists an instance I = (P, s, a) such that E [‖xA(t)− x∗‖∞] = Ω(1/t1+c), where
xA(t) denotes the opinion vector produced by A for the instance I = (P, s, α).
To prove Theorem 3, we show that graph oblivious rules whose dynamics converge fast imply the
existence of estimators for Bernoulli distributions with “small” sample complexity. The key part of
the proof lies in Lemma 6, in which it is proven that such estimators cannot exist. We also briefly
discuss two well-known sample complexity lower bounds from the statistics literature and explain
why they do not work in our case.

In Section 6, we present a simple update rule that achieves error rate e−Õ(
√
t). This update rule

is a function of the opinions and the indices of the neighbors that i met, si, αi and the i-th row
of the matrix P . Obviously this rule is not graph oblivious, due to its dependency on the i-th row
and the indices, and thus does not ensure no regret to an agent that adopts it (see Example 1 in
Appendix C). However it reveals that slow convergence is not a generic property of the limited
information dynamics, but comes with the assumption that agents act selfishly.

3 Convergence Rate of FTL Dynamics

In this section we prove Theorem 1 which bounds the convergence time of FTL dynamics to the
unique equilibrium point x∗. Notice that for an instance I = (P, s, α), the opinion vector x(t) ∈ [0, 1]n
of the FTL dynamics (see Dynamics 1) can be written equivalently as follows:
– Initially all agents adopt their internal opinion, xi(0) = si.
– At round t ≥ 1, each agent i updates her opinion xi(t) = (1− αi)

∑t−1
τ=0 xW τ

i
(τ)/t+ αisi, where

W τ
i is the neighbor that i met at round t.

Since the opinion vector x(t) is a random vector, the convergence metric used in Theorem 1 is
E [‖x(t)− x∗‖∞] where the expectation is taken over the random meeting of the agents. At first we
present a high level idea of the proof. We remind that the unique equilibrium x∗ ∈ [0, 1]n of the
instance I = (P, s, α) satisfies the following equations for each agent i ∈ V ,

x∗i = (1− αi)
∑
j∈Ni

pijx
∗
j + αisi

Since our metric is E [‖x(t)− x∗‖∞], we can use the above equations to bound |xi(t)− x∗i |.

|xi(t)− x∗i | = (1− αi)

∣∣∣∣∣∣
∑t−1
τ=0 xW τ

i
(τ)

t
−
∑
j∈Ni

pijx
∗
j

∣∣∣∣∣∣
= (1− αi)

∣∣∣∣∣∣
∑
j∈Ni

∑t−1
τ=0 1[W τ

i = j]xj(τ)
t

−
∑
j∈Ni

pijx
∗
j

∣∣∣∣∣∣
≤ (1− αi)

∑
j∈Ni

∣∣∣∣∣
∑t−1
τ=0 1[W τ

i = j]xj(τ)
t

− pijx∗j

∣∣∣∣∣
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Now assume that |
∑t−1

τ=0 1[W τ
i =j]

t −pij | = 0 for all t ≥ 1, then with simple algebraic manipulations one

can prove that ‖x(t)−x∗‖∞ ≤ e(t) where e(t) satisfies the recursive equation e(t) = (1−ρ)
∑t−1

τ=0 e(τ)
t ,

where ρ = min ai. It follows that ‖x(t)− x∗‖∞ ≤ 1/tρ meaning that x(t) converges to x∗. Obviously
the latter assumption does not hold, however since W τ

i are independent random variables with

P [W τ
i = j] = pij , |

∑t−1
τ=0 1[W τ

i =j]
t − pij | tends to 0 with probability 1. In Lemma 1 we use this fact

to obtain a similar recursive equation for e(t) and then in Lemma 2 we upper bound its solution.

Lemma 1. Let e(t) the solution of the recursion e(t) = δ(t) + (1 − ρ)
∑t−1

τ=0 e(τ)
t where e(0) =

‖x(0)− x∗‖∞, δ(t) =
√

ln(π2nt2/6p)/t and ρ = mini∈V αi. Then,

P [for all t ≥ 1, ‖x(t)− x∗‖∞ ≤ e(t)] ≥ 1− p

Proof. At first we prove that with probability at least 1− p, for all t ≥ 1 and all agents i:∣∣∣∣∣∣
∑t−1
τ=0 x

∗
W τ
i

t
−
∑
j∈Ni

pijx
∗
j

∣∣∣∣∣∣ ≤
√

log(π2nt2/(6p))
t

:= δ(t). (4)

Since W τ
i are independent random variables with P [W τ

i = j] = pij and E
[
x∗W τ

i

]
=
∑
j∈Ni pijx

∗
j . By

the Hoeffding’s inequality we get

P

∣∣∣∣∣∣
∑t−1
τ=0 x

∗
W τ
i

t
−
∑
j∈Ni

pijx
∗
j

∣∣∣∣∣∣ > δ(t)

 < 6p/(π2nt2).

To bound the probability of error for all rounds t ≥ 1 and all agents i, we apply the union bound

∞∑
t=1

P

max
i

∣∣∣∣∣∣
∑t−1
τ=0 x

∗
W τ
i

t
−
∑
j∈Ni

pijx
∗
j

∣∣∣∣∣∣ > δ(t)

 ≤ ∞∑
t=1

6
π2

1
t2

n∑
i=1

p

n
= p

As a result with probability at least 1 − p we have that inequality (4) holds for all t ≥ 1 and all
agents i. We now prove our claim by induction. Let ‖x(τ)− x∗‖∞ ≤ e(τ) for all τ ≤ t− 1. Then

xi(t) = (1− αi)
∑t−1
τ=0 xW τ

i
(τ)

t
+ αisi

≤ (1− αi)
∑t−1
τ=0 x

∗
W τ
i

+
∑t−1
τ=0 e(τ)

t
+ αisi (5)

≤ (1− αi)

∑t−1
τ=0 x

∗
W τ
i

t
+
∑t−1
τ=0 e(τ)
t

+ αisi

≤ (1− αi)

∑
j∈Ni

pijx
∗
j + δ(t) +

∑t−1
τ=0 e(τ)
t

+ αisi (6)

≤ x∗i + δ(t) + (1− ρ)
(∑t−1

τ=0 e(τ)
t

)

We get (5) from the induction step and (6) from inequality (4). Similarly, we can prove that

xi(t) ≥ x∗i − δ(t)− (1− ρ)
∑t−1

τ=0 e(τ)
t . As a result ‖x(t)− x∗‖∞ ≤ e(t) and the induction is complete.

Therefore, we have that with probability at least 1− p, ‖x(t)− x∗‖∞ ≤ e(t) for all t ≥ 1.
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Lemma 2. Let e(t) be a function satisfying the recursion e(t) = δ(t)+(1−ρ)
∑t−1
τ=0 e(τ)/t and e(0) =

‖x(0) − x∗‖∞, where δ(t) =
√

ln(Dt2.5)/t, δ(0) = 0, and D > e2.5 is a positive constant. Then
e(t) ≤

√
2 ln(D) (ln t)3/2

tmin(ρ, 1/2) .

Theorem 1 follows by direct application of Lemma 2 and both proofs can be found in the Appendix A.

4 Follow the Leader ensures no regret

In this section we provide rigorous definitions of no regret algorithms and explain why update
rule (3) ensures no regret to any agent that repeatedly plays the game of Definition 1. Based on the
cost that the agents experience, we consider an appropriate Online Convex Optimization problem.
This problem can be viewed as a “game” played between an adversary and a player. At round t ≥ 0,
1. the player selects a value xt ∈ [0, 1].
2. the adversary observes the xt and selects a bt ∈ [0, 1]
3. the player receives cost f(xt, bt) = (1− α)(xt − bt)2 + α(xt − s)2.
where s, α are constants in [0, 1]. The goal of the player is to pick xt based on the history (b0, . . . , bt−1)
in a way that minimizes her total cost. Generally, different OCO problems can be defined by a set
of functions F that the adversary chooses from and a feasibility set K from which the player picks
her value (see [Haz16] for an introduction to the OCO framework). In our case the feasibility set
is K = [0, 1] and the set of functions is Fs,α = {x 7→ (1− α)(x− b)2 + α(x− s)2 : b ∈ [0, 1]}. As a
result, each selection of the constants s, α leads to a different OCO problem.

Definition 7. An algorithm A for the OCO problem with Fs,α and K = [0, 1] is a sequence of
functions (At)∞t=0 where At : [0, 1]t 7→ [0, 1].

Definition 8. An algorithm A is no regret for the OCO problem with Fs,α and K = [0, 1] if and
only if for all sequences (bt)∞t=0 that the adversary may choose, if xt = At(b0, . . . , bt−1) then for all t∑t

τ=0 f(xτ , bτ ) ≤ minx∈[0,1]
∑t
τ=0 f(x, bτ ) + o(t).

Informally speaking, if the player selects the value xt according to a no regret algorithm then she does
not regret not playing any fixed value no matter what the choices of the adversary are. Theorem 2
states that Follow the Leader i.e. xt = argminx∈[0,1]

∑t−1
τ=0 f(x, bτ ) is a no regret algorithm for all

the OCO problems with Fs,α.
Returning to the dynamics of the game in Definition 1, it is reasonable to assume that each

agent i selects xi(t) according to no regret algorithm Ai for the OCO problem with Fsi,αi , since by
Definition 8,

1
t

t∑
τ=0

fi(xi(τ), xW τ
i

(τ)) ≤ 1
t

min
x∈[0,1]

t∑
τ=0

fi(x, xW τ
i

(τ)) + o(t)
t

The latter means that the time averaged total disagreement cost that she suffers is close to the time
averaged cost by expressing the best fixed opinion and this holds regardless of the opinions of the
neighbors that i meets. Meaning that even if the other agents selected their opinions maliciously,
her total experienced cost would still be in a sense minimal. Under this perspective update rule (3)
is a rational choice for selfish agents and as a result FTL dynamics is a natural limited information
variant of the FJ model.

We now present the key steps for proving Theorem 2. We first prove that a similar strategy that
also takes into account the value bt admits no regret (Lemma 3). Obviously, knowing the value bt
before selecting xt is in direct contrast with the OCO framework, however proving the no regret
property for this algorithm easily extends to establishing the no regret property of Follow the Leader.
Theorem 2 follows by direct application of Lemma 4 and all proofs can be found in the Appendix B.
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Lemma 3. Let (bt)∞t=0 be an arbitrary sequence with bt ∈ [0, 1]. Let yt = argminx∈[0,1]
∑t
τ=0 f(x,bτ )

then for all t,
∑t
τ=0 f(yτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ).

Now we can understand why Follow the Leader admits no regret. Since the cost incurred by the
sequence yt is at most that of the best fixed value, we can compare the cost incurred by xt with that
of yt. Since the functions in Fs,α are quadratic, the extra term f(x, bt) that yt takes into account
doesn’t change dramatically the minimum of the total sum. Namely, xt, yt are relatively close.

Lemma 4. For all t ≥ 0, f(xt, bt) ≤ f(yt, bt) + 21−α
t+1 + (1−α)2

(t+1)2 .

5 Lower Bound for Graph Oblivious Dynamics

In this section we prove that any no regret dynamics cannot converge much faster than FTL
dynamics (Dynamics 1).

Definition 9 (no regret dynamics). Consider a collection of no regret algorithms such that for
each (s, α) ∈ [0, 1]2 a no regret algorithm As,α

3for the OCO problem with Fs,α and K = [0, 1], is
selected. For a given instance I = (P, s, α) this selection produces the no regret dynamics x(t) defined
as follows:

– Initially each agent i selects her opinion xi(0) = Asi,αi0 (si, αi)
– At round t ≥ 1, each agent i selects her opinion xi(t) = Asi,αit (xW 0

i
(0), . . . , xW t−1

i
(t− 1), si, αi),

where W t
i is the neighbors that i meets at round t.

Such a selection of no regret algorithms can be encoded as a graph oblivious update rule.
Specifically, the function At : {0, 1}t+2 7→ [0, 1] is defined as At(b0, . . . , bt−1, s, α) = Ats,α(b0, . . . , bt−1).
Thus, Theorem 3 applies and establishes the existence of an instance I = (P, s, α) such that the
produced x(t) converges at best slowly to x∗. For example if agents use the Online Gradient Descent4

to update her opinion i.e. xi(t + 1) = xi(t) − 1/
√
t(xi(t) − (1 − αi)xW t

i
(t) − αisi). Then we are

ensured that fast convergence cannot be established in the respective no regret dynamics.
The rest of the section is dedicated to prove Theorem 3. In Lemma 5 we show that any graph

oblivious update rule A can be used as an estimator of the parameter p ∈ [0, 1] of a Bernoulli
random variable. Since we prove Theorem 3 using a reduction to an estimation problem, we shall
first briefly introduce some definitions and notation. For simplicity we will restrict the following
definitions of estimators and risk to the case of estimating the parameter p of Bernoulli random
variables. Given t independent samples from a Bernoulli random variable B(p), an estimator is an
algorithm that takes these samples as input and outputs an answer in [0, 1].

Definition 10. An estimator θ = (θt)∞t=1 is a sequence of functions, θt : {0, 1}t 7→ [0, 1].

Perhaps the first estimator that comes to one’s mind is the sample mean, that is θt =
∑t
i=1Xi/t.

To measure the efficiency of an estimator we define the risk, which corresponds to the expected
error of an estimator.

Definition 11. Let P be a Bernoulli distribution with mean p and P t be the corresponding t-fold
product distribution. The risk of an estimator θ = (θt)∞t=1 is E(X1,...,Xt)∼P t [|θt(X1, . . . , Xt)− p|],
which we will denote by Ep [|θt(X1, . . . , Xt)− p|] or Ep [|θt − p|] for brevity.

3 These s, α are scalars in [0, 1] and should not be confused with the internal opinion vector s and the self confidence
vector α of an instance I = (P, s, α).

4 Online Gradient Descent is an influential no regret algorithm proposed by Zinkevic in [Zin03] for the general OCO
problem, where the adversary can select any convex function with bounded gradient. The latter directly implies
that it also ensures no regret in our simpler OCO problem with Fsi,αi and K = [0, 1].
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The risk Ep [|θt − p|] quantifies the error rate of the estimated value p̂ = θt(Y1, . . . , Yt) to the real
parameter p as the number of samples t grows. Since p is unknown, any meaningful estimator
θ = (θt)∞t=1 must guarantee that limt→∞Ep [|θt − p|] = 0 for all p. For example, sample mean has
error rate Ep [|θt − p|] ≤ 1

2
√
t
.

Lemma 5. Let A a graph oblivious update rule such that for all instances I = (P, s, α),

lim
t→∞

t1+cE [‖xA(t)− x∗‖∞] = 0.

Then there exists an estimator θA = (θAt )∞t=1 such that for all p ∈ [0, 1], limt→∞ t
1+cEp

[
|θAt − p|

]
= 0.

Proof. We construct an estimator θA = (θAt )∞t=1 using the update rule A. Consider the instance Ip
described in Figure 1. By straightforward computation, we get that the equilibrium point of the
graph is x∗c = p/3, x∗1 = p/6 + 1/2, x∗0 = p/6. Now consider the opinion vector xA(t) produced by
the update rule A for the instance Ip. Note that for t ≥ 1,

– xA1 (t) = At(xc(0), . . . , xc(t− 1), 1, 1/2)
– xA0 (t) = At(xc(0), . . . , xc(t− 1), 0, 1/2)
– xAc (t) = At(xW 0

c
(0), . . . , xW t−1

c
(t− 1), 0, 1/2)

The key observation is that the opinion vector xA(t) is a deterministic function of the index
sequence W 0

c , . . . ,W
t−1
c and does not depend on p. Thus, we can construct the estimator θA

with θAt (W 0
c , . . . ,W

t−1
c ) = 3xAc (t). For a given instance Ip the choice of neighbor W t

c is given
by the value of the Bernoulli random variable with parameter p (P

[
W t
c = 1

]
= p). As a result,

Ep

[
|θAt − p|

]
= 3E

[
|xAc (t)− p/3|

]
≤ 3E [‖xA(t)− x∗‖∞]. Since for any instance Ip, we have that

limt→∞ t
1+cE [‖xA(t)− x∗‖∞] = 0, it follows that limt→∞ t

1+cEp

[
|θAt − p|

]
= 0 for all p ∈ [0, 1].

C

ac = 1/2, sc = 0

1

a1 = 1/2, s1 = 1

0

a0 = 1/2, s0 = 0

p

1− p1

1

Fig. 1

In order to prove Theorem 3 we just need to prove the following claim.

Claim. For any estimator θ = (θt)∞t=1 there exists a p ∈ [0, 1] such that limt→∞ t
1+cEp [|θt − p] > 0.

The above claim states that for any estimator θ = (θt)∞t=1, we can inspect the functions θt : {0, 1}t 7→
[0, 1] and then choose a p ∈ [0, 1] such that the function Ep [|θt − p|] = Ω(1/t1+c). As a result, we
have reduced the construction of a lower bound concerning the round complexity of a dynamical
process to a lower bound concerning the sample complexity of estimating the parameter p of a
Bernoulli distribution. The claim follows by Lemma 6, which we present at the end of the section.

At this point we should mention that it is known that Ω(1/ε2) samples are needed to estimate
the parameter p of a Bernoulli random variable within additive error ε. Another well-known result
is that taking the average of the samples is the best way to estimate the mean of a Bernoulli
random variable. These results would indicate that the best possible rate of convergence for an graph
oblivious dynamics would be O(1/

√
t). However, there is some fine print in these results which does

not allow us to use them. In order to explain the various limitations of these methods and results
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we will briefly discuss some of them. We remark that this discussion is not needed to understand
the proof of Lemma 6.

The oldest sample complexity lower bound for estimation problems is the well-known Cramer-Rao
inequality. Let the function θt : {0, 1}t 7→ [0, 1] such that Ep [θt] = p for all p ∈ [0, 1], then

Ep

[
(θt − p)2

]
≥ p(1− p)

t
. (7)

Since Ep [|θt − p|] can be lower bounded by Ep
[
(θt − p)2] we can apply the Cramer-Rao inequality

and prove our claim in the case of unbiased estimators, Ep [θt] = p for all t. Obviously, we need to
prove it for any estimator θ, however this is a first indication that our claim holds.

Sample complexity lower bounds without assumptions about the estimator are usually given as
lower bounds for the minimax risk, which was defined 5 by Wald in [Wal39] as

min
θt

max
p∈[0,1]

Ep [|θt − p|] .

Minimax risk captures the idea that after we pick the best possible algorithm, an adversary inspects
it and picks the worst possible p ∈ [0, 1] to generate the samples that our algorithm will get as
input. The methods of Le’Cam, Fano, and Assouad are well-known information-theoretic methods
to establish lower bounds for the minimax risk. For more on these methods see [Yu97,Tsy08]. As
we stated before, it is well known that the minimax risk for the case of estimating the mean of
a Bernoulli is lower bounded by Ω(1/

√
t) and this lower bound can be established by Le Cam’s

method. In order to show why such results do no work for our purposes we shall sketch how one
would apply Le Cam’s method to get this lower bound. To apply Le Cam’s method, one typically
chooses two Bernoulli distributions whose means are far but their total variation distance is small.
Le Cam showed that when two distributions are close in total variation then given a sequence of
samples X1, . . . , Xt it is hard to tell whether these samples were produced by P1 or P2. The hardness
of this testing problem implies the hardness of estimating the parameters of a family of distributions.
For our problem the two distributions would be B(1/2− 1/

√
t) and B(1/2 + 1/

√
t). It is not hard

to see that their total variation distance is at most O(1/t), which implies a lower bound Ω(1/
√
t)

for the minimax risk. The problem here is that the parameters of the two distributions depend on
the number of samples t. The more samples the algorithm gets to see, the closer the adversary takes
the 2 distributions to be. For our problem we would like to fix an instance and then argue about
the rate of convergence of any algorithm on this instance. Namely, having an instance that depends
on t does not work for us.

Trying to get a lower bound without assumptions about the estimators while respecting our
need for a fixed (independent of t) p we prove Lemma 6. In fact, we show something stronger: for
almost all p ∈ [0, 1], any estimator θ cannot achieve rate o(1/t1+c).

Lemma 6. Let θ = (θt)∞t=1 be a Bernoulli estimator with error rate Ep [|θt − p|]. For any c > 0, if
we select p uniformly at random in [0, 1] then limt→∞ t

1+cEp [|θt − p|] > 0 with probability 1.

Proof. Since θt is a function from {0, 1}t to [0, 1], θt can have at most 2t different values. Without
loss of generality, we assume that θt takes the same value θt(x) for all x ∈ {0, 1}t with the same
number of 1’s. For example, θ3({1, 0, 0}) = θ3({0, 1, 0}) = θ3({0, 0, 1}). This is due to the fact that
for any p ∈ [0, 1],∑

0≤i≤t

∑
‖x‖1=i

|θt(x)− p| pi(1− p)t−i ≥
∑

0≤i≤t

(
t

i

) ∣∣∣∣∣
∑
‖x‖1=i θt(x)(t

i

) − p
∣∣∣∣∣ pi(1− p)t−i.

5 Although the minimax risk is defined for any estimation problem and loss function, for simplicity, we write the
minimax risk for estimating the mean of a Bernoulli random variable.
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For any estimator θ with error rate Ep [|θt − p|] there exists another estimator θ′ that satisfies the
above property and Ep [|θ′t − p|] ≤ Ep [|θt − p|] for all p ∈ [0, 1]. Thus, we can assume that θt takes
at most t + 1 different values. Let A denote the set of p for which the estimator has error rate
o(1/t1+c), that is

A = {p ∈ [0, 1] : lim
t→∞

t1+cEp [|θt − p|] = 0}.

We show that if we select p uniformly at random in [0, 1] then P [p ∈ A] = 0. We also define the set

Ak = {p ∈ [0, 1] : for all t ≥ k, t1+cEp [|θt − p|] ≤ 1}.

Observe that if p ∈ A then there exists tp such that p ∈ Atp , meaning that A ⊆
⋃∞
k=1Ak. As a

result,

P [p ∈ A] ≤ P
[
p ∈

∞⋃
k=1

Ak

]
≤
∞∑
k=1

P [p ∈ Ak] .

To complete the proof we show that P [p ∈ Ak] = 0 for all k. Notice that p ∈ Ak implies that for
t ≥ k, the estimator θ must always have a value θt(i) close to p. Using this intuition we define the
set

Bk = {p ∈ [0, 1] : for all t ≥ k, t1+c min
0≤i≤t

|θt(i)− p| ≤ 1}.

We now show that Ak ⊆ Bk. Since p ∈ Ak we have that for all t ≥ k

t1+c min
0≤i≤t

|θt(i)− p|
t∑
i=0

(
t

i

)
pi(1− p)t−i ≤ t1+c

t∑
i=0

(
t

i

)
|θt(i)− p| pi(1− p)t−i = t1+cEp [|θt − p|] ≤ 1.

Thus, P [p ∈ Ak] ≤ P [p ∈ Bk]. We write the set Bk as

Bk =
∞⋂
t=k
{p ∈ [0, 1] : min

0≤i≤t
|θt(i)− p| ≤ 1/t1+c}.

As a result, P [p ∈ Bk] ≤ P
[
min0≤i≤t |θt(i)− p| ≤ 1/t1+c] , for all t ≥ k. Each value θt(i) “covers”

0 θt(0) θt(1) θt(t) 1. . .

2
t1+c

2
t1+c

2
t1+c

Fig. 2: Estimator output at time t

length 1/t1+c from its left and right, as shown in Figure 2, and since there are at most t+ 1 such
values, by the union bound we get P [p ∈ Bk] ≤ 2(t + 1)/t1+c, for all t ≥ k. We conclude that
P [p ∈ Bk] = 0.

6 Limited Information Dynamics with Fast Convergence

We already discussed that the reason that graph oblivious dynamics suffer slow convergence is that
the update rule depends only on the observed opinions. Based on works for asynchronous distributed
minimization algorithms [BT97,CC16], we provide an update rule showing that information about
the graph G combined with agents that do not act selfishly can restore the fast convergence rate.
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Our update rule depends not only on the expressed opinions of the neighbors that an agent i meets,
but also on the i-th row of matrix P . We have already mentioned that while this update rule
guarantees fast convergence it does not guarantee no regret to the agents. To make this concrete we
include a simple example in Appendix C. Agents that choose to update their opinions according to
Dynamics 2 may experience regret if some other agents play adversarially.

In update rule (8), each agent stores the most recent opinions of the random neighbors that
she meets in an array and then updates her opinion according to their weighted sum (each agent
knows row i of P ). For a given instance I = (P, s, α) we call the produced dynamics Row Dependent
dynamics (Dynamics 2).

The problem with this approach is that the opinions of the neighbors that she keeps in her array
are outdated, i.e. the opinion of a neighbor of agent i has changed since their last meeting. The good
news are that as long as this outdatedness is bounded we can still achieve fast convergence to the
equilibrium. By bounded outdatedness we mean that there exists a number of rounds B such that
all agents have met all their neighbors at least once from t−B to t. The latter is formally stated in
Lemma 7 and its proof can be found in Appendix C.

Remark 1. Update rule (8), apart from the opinions and the indices of the neighbors that an agent
meets, also depends on the the exact values of the weights pij and that is why Row Dependent
dynamics converge fast. We mention that the lower bound of Section 5 still holds even if the agents
also use the indices of the neighbors that they meet to update their opinion, since Lemma 5 can
be easily modified to cover this case. The latter implies that any update rule that ensures fast
convergence would require from each agent i to be aware of the i-th row of matrix P .

Dynamics 2 Row Dependent dynamics
1: Initially xi(0) = si for all agent i.
2: Each agent i keeps an array Mi of length |Ni|, randomly initialized.
3: At round t ≥ 0 each agent i:

4: Meets neighbor with index W t
i , P

[
W t
i = j

]
= pij .

5: Suffers cost (1− αi)(xi(t)− xW t
i
(t))2 + ai(xi(t)− si)2 and learns (xW t

i
(t),W t

i ).
6: Updates her array Mi and opinion: Mi[W t

i ]← xW t
i
(t), xi(t+ 1) = (1− αi)

∑
j∈Ni

pijMi[j] + αisi (8)

Lemma 7. Let ρ = mini ai, and πij(t) be the most recent round before round t, that agent i met
her neighbor j. If for all t ≥ B, t−B ≤ πij(t) then, for all t ≥ kB, ‖x(t)− x∗‖∞ ≤ (1− ρ)k.

In Row Dependent dynamics there does not exist a fixed length window B that satisfies the
requirements of Lemma 7. However we can select a length value such that the requirements hold
with high probability. To do this observe that agent i simply needs to wait to meet the neighbor j
with the smallest weight pij . Therefore, after log(1/δ)/minj pij rounds we have that with probability
at least 1− δ agent i met all her neighbors at least once. Since we want this to be true for all agents,
we shall roughly take B = 1/minpij>0 pij . In Appendix C we give the detailed argument that leads
to Theorem 4, showing that the convergence rate of update rule (8) is fast.

Theorem 4. Let I = (P, s, α) be an instance of the opinion formation game of Definition 1 with
equilibrium x∗ ∈ [0, 1]n and let ρ = mini∈V ai. The opinion vector x(t) ∈ [0, 1]n produced by update
rule (8) after t rounds satisfies E [‖x(t)− x∗‖∞] ≤ 2 exp(−ρminij pij

√
t/(4 ln(nt))).
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A Convergence Rate of FTL Dynamics

We present the proofs of Lemma 2 and Theorem 1 of Section 3

Lemma 2. Let e(t) be a function satisfying the recursion e(t) = δ(t)+(1−ρ)
∑t−1
τ=0 e(τ)/t and e(0) =

‖x(0) − x∗‖∞, where δ(t) =
√

ln(Dt2.5)/t, δ(0) = 0, and D > e2.5 is a positive constant. Then
e(t) ≤

√
2 ln(D) (ln t)3/2

tmin(ρ, 1/2) .

Proof. Observe that for all t ≥ 0 the function e(t) the following recursive relation

e(t+ 1) = e(t)
(

1− ρ

t+ 1

)
+ δ(t+ 1)− δ(t) + δ(t)

t+ 1 (9)

For t = 0 we have that

e(1) = (1− ρ)e(0) + δ(1) = (1− ρ)e(0) +
√

lnD (10)

Observe that for D > e2.5, δ(t) is decreasing for all t ≥ 1. Therefore, δ(t+ 1)− δ(t) + δ(t)
t+1 ≤

δ(t)
t+1 and

from equations (9) and (10) we get that for all t ≥ 0

e(t+ 1) ≤ e(t)
(

1− ρ

t+ 1

)
+
√

ln(D(t+ 1)2)
(t+ 1)3/2 ≤ e(t)

(
1− ρ

t+ 1

)
+
√

2 ln(D(t+ 1))
(t+ 1)3/2

Now let g(t) =
√

2 ln(Dt)
t3/2 to obtain for all t ≥ 1

e(t) ≤ (1− ρ

t
)e(t− 1) + g(t)

≤ (1− ρ

t
)(1− ρ

t− 1)e(t− 2) + (1− ρ

t
)g(t− 1) + g(t)

≤ (1− ρ

t
) · · · (1− ρ)e(0) +

t∑
τ=1

g(τ)
t∏

i=τ+1
(1− ρ

i
)

≤ e(0)
tρ

+
t∑

τ=1
g(τ)e−ρ

∑t

i=τ+1
1
i

≤ e(0)
tρ

+
t∑

τ=1
g(τ)e−ρ(Ht−Hτ )

≤ e(0)
tρ

+ e−ρHt
t∑

τ=1
g(τ)eρHτ

≤ e(0)
tρ

+
√

2
tρ

t∑
τ=1

τρ
√

ln(Dτ)
τ3/2

≤ e(0)
tρ

+
√

2 lnD
tρ

t∑
τ=1

√
ln τ

τ3/2−ρ

We observe that
t∑

τ=1

√
ln τ

τ3/2−ρ ≤
∫ t

τ=1

√
ln τ

τ3/2−ρdτ (11)

since, τ 7→
√

ln τ
τ3/2−ρ is a decreasing function of τ for all ρ ∈ [0, 1].
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– If ρ ≤ 1/2 then ∫ t

τ=1
τρ
√

ln τ
τ3/2 dτ ≤

√
ln t

∫ t

τ=1

1
τ

dτ = (ln t)3/2

– If ρ > 1/2 then

∫ t

τ=1
τρ
√

ln τ
τ3/2 dτ =

∫ t

τ=1
τρ−1/2

√
ln τ
τ

dτ

= 2
3

∫ t

τ=1
τρ−1/2((ln τ)3/2)′dτ

= 2
3 t
ρ−1/2(ln t)3/2 − (ρ− 1/2)2

3

∫ t

τ=1
τρ−3/2(ln τ)3/2dτ

≤ 2
3 t
ρ−1/2(ln t)3/2

Theorem 1. Let I = (P, s, α) be an instance of the opinion formation game of Definition 1 with
equilibrium x∗ ∈ [0, 1]n. The opinion vector x(t) ∈ [0, 1]n produced by update rule (3) after t rounds
satisfies

E [‖x(t)− x∗‖∞] ≤ C
√

logn (log t)3/2

tmin(1/2,ρ) ,

where ρ = mini∈V ai and C is a universal constant.

Proof. By Lemma 1 we have that for all t ≥ 1 and p ∈ [0, 1],

P [‖x(t)− x∗‖∞ ≤ ep(t)] ≥ 1− p

where ep(t) is the solution of the recursion, ep(t) = δ(t)+(1−ρ)
∑t−1

τ=0 ep(τ)
t with δ(t) =

√
log(π2nt2/(6p))

t .
Setting p = 1

12
√
t
we have that

P [‖x(t)− x∗‖∞ ≤ e(t)] ≥ 1− 1
12
√
t

where e(t) is the solution of the recursion e(t) = δ(t) + (1− ρ)
∑t−1

τ=0 ep(τ)
t with δ(t) =

√
log(2π2nt2.5)

t .
Since 2π2 ≥ e2.5, Lemma 2 applies and e(t) ≤ C

√
logn log t3/2

tmin(ρ,1/2) for some universal constant C.
Finally,

E [‖x(t)− x∗‖∞] ≤ 1
12
√
t

+ (1− 1
12
√
t
)C
√

logn (log t)3/2

tmin(ρ,1/2) ≤ (C + 1
12)

√
logn (log t)3/2

tmin(ρ,1/2)

B Follow the leader ensures no regret

We present the detailed proofs of Lemma 3, Lemma 4 and Theorem 2 of Section 4.

Lemma 3. Let (bt)∞t=0 be an arbitrary sequence with bt ∈ [0, 1]. Let yt = argminx∈[0,1]
∑t
τ=0 f(x,bτ )

then for all t,
∑t
τ=0 f(yτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ).
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Proof. By definition of yt,
∑t
τ=0 f(yt, bτ ) = minx∈[0,1]

∑t
τ=0 f(x, bτ ), so

t∑
τ=0

f(yτ , bτ )− min
x∈[0,1]

t∑
τ=0

f(x, bτ ) =
t∑

τ=0
f(yτ , bτ )−

t∑
τ=0

f(yt, bτ )

=
t−1∑
τ=0

f(yτ , bτ )−
t−1∑
τ=0

f(yt, bτ )

≤
t−1∑
τ=0

f(yτ , bτ )−
t−1∑
τ=0

f(yt−1, bτ )

The last inequality follows by the fact that yt−1 = argminx∈[0,1]
∑t−1
τ=0 f(x,bτ ) Inductively, we prove

that
∑t
τ=0 f(yτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ).

Lemma 4. For all t ≥ 0, f(xt, bt) ≤ f(yt, bt) + 21−α
t+1 + (1−α)2

(t+1)2 .

Proof. We first prove that for all t,

|xt − yt| ≤
1− α
t+ 1 . (12)

By definition xt = αs+ (1− α)
∑t−1

τ=0 bτ
t and yt = αs+ (1− α)

∑t

τ=0 bτ
t+1 .

|xt − yt| = (1− α)
∣∣∣∣∣
∑t−1
τ=0 bτ
t

−
∑t
τ=0 bτ
t+ 1

∣∣∣∣∣
= (1− α)

∣∣∣∣∣
∑t−1
τ=0 bτ − tbt
t(t+ 1)

∣∣∣∣∣
≤ 1− α

t+ 1

The last inequality follows from the fact that bτ ∈ [0, 1]. We now use inequality (12) to bound the
difference f(xt, bt)− f(yt, bt).

f(xt, bt) = α(xt − s)2 + (1− α)(xt − yt)2

≤ α(yt − s)2 + 2α |yt − s| |xt − yt|+ α |xt − yt|2

+ (1− α)(yt − yt)2 + 2(1− α) |yt − yt| |xt − yt|+ (1− α) |xt − yt|2

≤ f(yt, bt) + 2 |xt − yt|+ |yt − xt|2

≤ f(yt, bt) + 21− α
t+ 1 + (1− α)2

(t+ 1)2

Theorem 2. Consider the function f : [0, 1]2 7→ [0, 1] with f(x, b) = (1 − α)(x − b)2 + α(x − s)2

for some constants s, α ∈ [0, 1]. Let (bt)∞t=0 be an arbitrary sequence with bt ∈ [0, 1]. If xt =
argminx∈[0,1]

∑t−1
τ=0 f(x,bτ ) then for all t,

∑t
τ=0 f(xτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ) +O (log t) .
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Proof. Theorem 2 easily follows by Lemma 3
t∑

τ=0
f(xτ , bτ ) ≤

t∑
τ=0

f(yτ , bτ ) +
T∑
τ=0

21− α
τ + 1 +

t∑
τ=0

(1− α)2

(τ + 1)2

≤ min
x∈[0,1]

t∑
τ=0

f(x, yτ ) + 2(1− α)(log t+ 1) + (1− α)π
2

6

≤ min
x∈[0,1]

t∑
τ=0

f(x, yτ ) +O(log t)

C Limited Information Dynamics with Fast Convergence

We are now going to state and prove a series of lemmas that culminate in the proof of Theorem 4.

Lemma 7. Let ρ = mini ai, and πij(t) be the most recent round before round t, that agent i met
her neighbor j. If for all t ≥ B, t−B ≤ πij(t) then, for all t ≥ kB, ‖x(t)− x∗‖∞ ≤ (1− ρ)k.

Proof. To prove our claim we use induction on k. For the induction base k = 1,

|xi(t)− x∗i | = |(1− αi)
∑
j∈Ni

pij(xj(πij(t))− x∗j )| ≤ (1− αi)
∑
j∈Ni

pij |xj(πij(t))− x∗j | ≤ (1− ρ)

Assume that for all t ≥ (k− 1)B we have that ‖x(t)− x∗‖∞ ≤ (1− ρ)k−1. For k ≥ 2, we again have
that

|xi(t)− x∗i | ≤ (1− ρ)
∑
j∈Ni

pij |xj(πij(t))− x∗j |

Since t − B ≤ πij(t) and t ≥ kB we obtain that πij(t) ≥ (k − 1)B. As a result, the inductive
hypothesis applies, |xj(πij(t))− x∗j | ≤ (1− ρ)k−1 and |xi(t)− x∗i | ≤ (1− ρ)k.

We now turn our attention to the problem of calculating the size of window B, such that with
high probability all agents have outdatedness at most B. We first state a useful fact concerning the
coupons collector problem.

Lemma 12. Suppose that the collector picks coupons with different probabilities, where n is the
number of distinct coupons. Let w be the minimum of these probabilities. If he selects lnn/w + c/w
coupons, then:

P [collector hasn’t seen all coupons] ≤ 1
ec

Lemma 13. Let πij(t) be the most recent round before round t that agent i met agent j and
B = 2 ln(ntδ )/minij pij. Then with probability at least 1− δ, for all τ ≥ B and for all i, j ∈ Ni

τ −B ≤ πij(τ) ≤ τ − 1.

Proof. For simplicity we denote w = minij pij . Consider an agent i at round τ ≥ B where B =
2 ln(ntδ )/w and assume that there exists an agent j ∈ Ni such that πij(τ) < τ −B. Agent i can be
viewed as a coupon collector that has buyed B coupons but has not found the coupon corresponding
to agent j. Since Ni < n and minj∈Ni pij ≥ w by Lemma 12 we have that

P [there exists j ∈ Ni s.t. πij(τ) < τ −B] ≤ δ

nt

The proof follows by a union bound for all agent i and all round B ≤ τ ≤ t.
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By direct application of Lemma 7 and Lemma 13, we obtain the following corollary that will be
useful in proving Theorem 4.

Corollary 1. Let x(t) the opinion vector produced by update rule (8) for the instance I = (P, s, α),
then with probability at least 1− δ

‖x(t)− x∗‖∞ ≤ exp
(
−ρtminij pij

2 ln(ntδ )

)

where ρ = mini∈V αi.

Proof. Let B = 2 ln(ntδ )/minij pij . By Lemma 13 we have that with probability at least 1− δ, for
all i, j ∈ Ni and for all τ ≥ B,

τ −B ≤ πij(τ)

As a result, with probability at least 1− δ the requirements of Lemma 7 are satisfied, meaning that

‖x(t)− x∗‖∞ ≤ (1− ρ)
t
B ≤ exp

(
−ρtminij pij

2 ln(ntδ )

)

We can now prove Theorem 4 using the previous results.

Theorem 4. Let I = (P, s, α) be an instance of the opinion formation game of Definition 1 with
equilibrium x∗ ∈ [0, 1]n and let ρ = mini∈V ai. The opinion vector x(t) ∈ [0, 1]n produced by update
rule (8) after t rounds satisfies E [‖x(t)− x∗‖∞] ≤ 2 exp(−ρminij pij

√
t/(4 ln(nt))).

Proof. Let u(t) = ‖x(t)− x∗‖∞ and w = minij pij . From Corollary 1 we obtain:

P
[
u(t) > exp

(
− ρwt

2 ln(ntδ )

)]
≤ δ

for every probability δ ∈ [0, 1]. Also, since all the parameters of the problem lie in [0, 1], we have

E [u(t)|u(t) > r] ≤ 1

Now, by the conditional expectations identity, we get:

E [u(t)] = E [u(t)|u(t) > r] P [u(t) > r] + E [u(t)|u(t) ≤ r] P [u(t) ≤ r]
≤ δ + r

where r = exp
(
− ρwt

2 ln(nt
δ

)

)
. If we set δ = exp

(
− ρw

√
t

2 lnnt

)
, then:

E [u(t)] ≤ exp
(
− ρw

√
t

2 lnnt

)
+ exp

(
− ρwt

2 ln(ntδ )

)
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We now evaluate r for our choice of probability δ:

r = exp

− ρwt

2 ln
(
nt
p

)


= exp

−
ρwt

2 ln

 nt

exp
(
− ρw

√
t

2 lnnt

)


= exp

− ρwt

2 lnnt+ 2 ρw
√
t

2 lnnt


≤ exp

(
− ρwt

4 ln(nt)
√
t

)

= exp
(
− ρw

√
t

4 ln(nt)

)

Using the previous calculation, we obtain:

E [u(t)] ≤ exp
(
− ρw

√
t

2 ln(nt)

)
+ exp

(
− ρw

√
t

4 ln(nt)

)

≤ 2 exp
(
− ρw

√
t

4 ln(nt)

)

= 2 exp
(
−ρmin

ij
pij

√
t

4 ln(nt)

)

Example 1. The purpose of this example is to illustrate that the update rule (8) does not ensure
the no regret property. If some agents for various reasons exhibit irrational or adversarial behavior,
agents that adopt update rule (8) may experience regret. That is the reason that Row Dependent
dynamics converge exponetially faster that any no regret dynamics incluing the FTL dynamics.

Consider the instance of the game of Definition 1 consisting of two agents. Agent 1 adopts
update rule (8) and has s1 = 0, α1 = 1/2, p12 = 1 and agent 2 plays adversarially. Thus, s2, α2, p21
don’t need to be specified. By update rule (8), x1(t) = x2(t− 1)/2 and thus total disagreement cost
that agent 1 experiences until round t is

t∑
τ=0

1
2x1(t)2 + 1

2(x1(t)− x2(t))2 =
t∑

τ=0

1
8x2(t− 1)2 + 1

2(1
2x2(t− 1)− x2(t))2.

Since agent 2 plays adversarially, she selects x2(t) = 0 if t is even and 1 otherwise. As a result, the
total cost that agent 1 experiences is

∑t
τ=0

1
2x1(t)2 + 1

2(x1(t)− x2(t))2 ' 3t/8. Now agent 1 regrets
for no adopting the fixed opinion 1/3 during the whole game play. Selecting x1(t) = 1/3 for all t,
would incur him total disagreement cost

∑t
τ=0

1
2(1/3)2 + 1

2(1/3− x2(t))2 ' 7t/36 which is less than
3t/8.
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