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Abstract

In this work, we seek a more refined understanding of the complexity of local optimum
computation for Max-Cut and pure Nash equilibrium (PNE) computation for congestion games
with weighted players and linear latency functions. We show that computing a PNE of linear
weighted congestion games is PLS-complete either for very restricted strategy spaces, namely
when player strategies are paths on a series-parallel network with a single origin and destination,
or for very restricted latency functions, namely when the latency on each resource is equal to the
congestion. Our results reveal a remarkable gap regarding the complexity of PNE in congestion
games with weighted and unweighted players, since in case of unweighted players, a PNE can
be easily computed by either a simple greedy algorithm (for series-parallel networks) or any
better response dynamics (when the latency is equal to the congestion). For the latter of the
results above, we need to show first that computing a local optimum of a natural restriction of
Max-Cut, which we call Node-Max-Cut, is PLS-complete. In Node-Max-Cut, the input graph
is vertex-weighted and the weight of each edge is equal to the product of the weights of its
endpoints. Due to the very restricted nature of Node-Max-Cut, the reduction requires a careful
combination of new gadgets with ideas and techniques from previous work. We also show how
to compute efficiently a (1 + ε)-approximate equilibrium for Node-Max-Cut, if the number of
different vertex weights is constant.

1 Introduction

Motivated by the remarkable success of local search in combinatorial optimization, Johnson et
al. introduced [25] the complexity class Polynomial Local Search (PLS), consisting of local search
problems with polynomially verifiable local optimality. PLS includes many natural complete prob-
lems (see e.g., [28, App. C]), with Circuit-Flip [25] and Max-Cut [33] among the best known
ones, and lays the foundation for a principled study of the complexity of local optima computation.
In the last 15 years, a significant volume of research on PLS-completeness was motivated by the
problem of computing a pure Nash equilibrium of potential games (see e.g., [1, 34, 20] and the
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references therein), where any improving deviation by a single player decreases a potential function
and its local optima correspond to pure Nash equilibria [29].

Computing a local optimum of Max-Cut under the flip neighborhood (a.k.a. Local-Max-
Cut) has been one of the most widely studied problems in PLS. Given an edge-weighed graph,
a cut is locally optimal if we cannot increase its weight by moving a vertex from one side of the
cut to the other. Since its PLS-completeness proof by Schäffer and Yannakakis [33], researchers
have shown that Local-Max-Cut remains PLS-complete for graphs with maximum degree five
[9], is polynomially solvable for cubic graphs [31], and its smoothed complexity is either polynomial
in complete [2] and sparse [9] graphs, or almost polynomial in general graphs [7, 10]. Moreover,
due to its simplicity and versatility, Max-Cut has been widely used in PLS reductions (see e.g.,
[1, 20, 34]). Local-Max-Cut can also be cast as a game, where each vertex aims to maximize the
total weight of its incident edges that cross the cut. Cut games are potential games (the value of the
cut is the potential function), which has motivated research on efficient computation of approximate
equilibria for Local-Max-Cut [3, 6]. To the best of our knowledge, apart from the work on the
smoothed complexity of Local-Max-Cut (and may be that Local-Max-Cut is P-complete for
unweighted graphs [33, Theorem 4.5]), there has not been any research on whether (and to which
extent) additional structure on edge weights affects hardness of Local-Max-Cut.

A closely related research direction deals with the complexity of computing a pure Nash equi-
librium (equilibrium or PNE, for brevity) of congestion games [32], a typical example of potential
games [29] and among the most widely studied classes of games in Algorithmic Game Theory (see
e.g., [15] for a brief account of previous work). In congestion games (or CGs, for brevity), a finite
set of players compete over a finite set of resources. Strategies are resource subsets and players aim
to minimize the total cost of the resources in their strategies. Each resource e is associated with
a (non-negative and non-decreasing) latency function, which determines the cost of using e as a
function of e’s congestion (i.e., the number of players including e in their strategy). Researchers
have extensively studied the properties of special cases and variants of CGs. Most relevant to this
work are symmetric (resp. asymmetric) CGs, where players share the same strategy set (resp.
have different strategy sets), network CGs, where strategies correspond to paths in an underlying
network, and weighted CGs, where player contribute to the congestion with a different weight.

Fabrikant et al. [12] proved that computing a PNE of asymmetric network CGs or symmetric
CGs is PLS-complete, and that it reduces to min-cost-flow for symmetric network CGs. About the
same time [17, 30] proved that weighted congestion games admit a (weighted) potential function,
and thus a PNE, if the latency functions are either affine or exponential (and [23, 24] proved that in
a certain sense, this restriction is necessary). Subsequently, Ackermann et al. [1] characterized the
strategy sets of CGs that guarantee efficient equilibrium computation. They also used a variant of
Local-Max-Cut, called threshold games, to simplify the PLS-completeness proof of [12] and to
show that computing a PNE of asymmetric network CGs with (exponentially steep) linear latencies
is PLS-complete.

On the other hand, the complexity of equilibrium computation for weighted CGs is not well
understood. All the hardness results above carry over to weighted CGs, since they generalize
standard CGs (where the players have unit weight). But on the positive side, we only know
how to efficiently compute a PNE for weighted CGs on parallel links with general latencies [16]
and for weighted CGs on parallel links with identity latency functions and asymmetric strategies
[19]. Despite the significant interest in (exact or approximate) equilibrium computation for CGs
(see e.g., [5, 6, 27] and the references therein), we do not understand how (and to which extent)
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the complexity of equilibrium computation is affected by player weights. This is especially true
for weighted CGs with linear latencies, which admit a potential function and their equilibrium
computation is in PLS.

Contributions. We contribute to both research directions outlined above. In a nutshell, we show
that equilibrium computation in linear weighted CGs is significantly harder than for standard CGs,
in the sense that it is PLS-complete either for very restricted strategy spaces, namely when player
strategies are paths on a series-parallel network with a single origin and destination, or for very
restricted latency functions, namely when resource costs are equal to the congestion. Our main step
towards proving the latter result is to show that computing a local optimum of Node-Max-Cut,
a natural and interesting restriction of Max-Cut where the weight of each edge is the product of
the weights of its endpoints, is PLS-complete.

More specifically, using a tight reduction from Local-Max-Cut, we first show, in Section 3.1,
that equilibrium computation for linear weighted CGs on series-parallel networks with a single
origin and destination is PLS-complete (Theorem 1). The reduction results in games where both
the player weights and the latency slopes are exponential. Our result reveals a remarkable gap
between weighted and standard CGs regarding the complexity of equilibrium computation, since
for standard CGs on series-parallel networks with a single origin and destination, a PNE can be
computed by a simple greedy algorithm [18].

Aiming at a deeper understanding of how different player weights affect the complexity of equi-
librium computation in CGs, we show, in Section 3.2, that computing a PNE of weighted network
CGs with asymmetric player strategies and identity latency functions is PLS-complete (Theorem 2).
Again the gap to standard CGs is remarkable, since for standard CGs with identity latency func-
tions, any better response dynamics converges to a PNE in polynomial time. In the reduction of
Theorem 2, Node-Max-Cut plays a role similar to that of threshold games in [1, Sec. 4]. The
choice of Node-Max-Cut seems necessary, in the sense that known PLS reductions, starting from
Not-All-Equal Satisfiability [12] or Local-Max-Cut [1], show that equilibrium computa-
tion is hard due to the interaction of players on different resources (where latencies simulate the
edge / clause weights), while in our setting, equilibrium computation is hard due to the player
weights, which are the same for all resources in a player’s strategy.

Node-Max-Cut is a natural restriction of Max-Cut and settling the complexity of its local
optima computation may be of independent interest, both conceptually and technically. Node-
Max-Cut coincides with the restriction of Max-Cut shown (weakly) NP-complete on complete
graphs in the seminal paper of Karp [26], while a significant generalization of Node-Max-Cut with
polynomial weights was shown P-complete in [33].

A major part of our technical effort concerns reducing Circuit-Flip to Node-Max-Cut, thus
showing that computing a local optimum of Node-Max-Cut is PLS-complete (Section 5). Since
Node-Max-Cut is a very restricted special case of Max-Cut we have to start from a PLS-
complete problem lying before Local-Max-Cut on the “reduction paths” of PLS. The reduction
is technically involved, due to the very restricted nature of the problem. In Node-Max-Cut,
every vertex contributes to the cut value of its neighbors with the same weight, and differentiation
comes only as a result of the different total weight in the neighborhood of each vertex. To deal
with this restriction, we combine some new carefully contstructed gadgets with the gadgets used
by Schäffer and Yannakakis [33], Elsässer and Tscheuschner [9]. and Gairing and Savani [20].
In general, as a very resctricted special case of Max-Cut, Node-Max-Cut is a natural and
convenient starting point for future PLS reductions, especially when one wants to show hardness
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of equilibrium computation for restricted classes of games that admit weighted potential functions
(e.g., as that in [17]). So, our results may serve as a first step towards a better understanding of
the complexity of (exact or approximate) equilibrium computation for weighted potential games.

We also show that a (1 + ε)-approximate equilibrium for Node-Max-Cut, where no vertex
can switch sides and increase the weight of its neighbors across the cut by a factor larger than
1 + ε, can be computed in time exponential in the number of different weights (see Theorem 3
for a precise statement). Thus, we can efficiently compute a (1 + ε)-approximate equilibrium for
Node-Max-Cut, for any ε > 0, if the number of different vertex weights is constant. Since similar
results are not known for Max-Cut, we believe that Theorem 3 may indicate that approximate
equilibrium computation for Node-Max-Cut may not be as hard as for Max-Cut. An interesting
direction for further research is to investigate (i) the quality of efficiently computable approximate
equilibria for Node-Max-Cut; and (ii) the smoothed complexity of its local optima.

Related Work. Existence and efficient computation of (exact or approximate) equilibria for
weighted congestion games have received significant research attention. We briefly discuss here
some of the most relevant previous work. There has been significant research interest in the con-
vergence rate of best response dynamics for weighted congestion games (see e.g., [8, 4, 11, 13, 22]).
Gairing et al. [19] presented a polynomial algorithm for computing a PNE for load balancing games
on restricted parallel links. Caragiannis et al. [6] established existence and presented efficient al-
gorithms for computing approximate PNE in weighted CGs with polynomial latencies (see also
[14, 21]).

Bhalgat et al. [3] presented an efficient algorithm for computing a (3 + ε)-approximate equilib-
rium in Max-Cut games, for any ε > 0. The approximation guarantee was improved to 2 + ε in
[6]. We highlight that the notion of approximate equilibrium in cut games is much stronger than
the notion of approximate local optimum of Max-Cut, since the former requires that no vertex
can significantly improve the total weight of its incidence edges that cross the cut (as e.g., in [3, 6]),
while the latter simply requires that the total weight of the cut cannot be significantly improved
(as e.g., in [6]).

Johnson et al. [25] introduced the complexity class PLS and proved that Circuit-Flip is PLS-
complete. Subsequently, Schäffer and Yannakakis [33] proved that Max-Cut is PLS-complete.
From a technical viewpoint, our work is close to previous work by Elsässer and Tscheuschner [9]
and Gairing and Savani [20], where they show that Local-Max-Cut in graphs of maximum degree
five [9] and computing a PNE for hedonic games [20] are PLS-complete, and by Ackermann et al.
[1], where they reduce Local-Max-Cut to computing a PNE in network congestion games.

2 Basic Definitions and Notation

Polynomial-Time Local Search (PLS). A polynomial-time local search (PLS) problem L [25, Sec. 2]
is specified by a (polynomially recognizable) set of instances IL, a set SL(x) of feasible solutions
for each instance x ∈ IL, with |s| = O(poly(|x|) for every solution s ∈ SL(x), an objective function
fL(s, x) that maps each solution s ∈ SL(x) to its value in instance x, and a neighborhood NL(s, x) ⊆
SL(x) of feasible solutions for each s ∈ SL(x). Moreover, there are three polynomial-time algorithms
that for any given instance x ∈ IL: (i) the first generates an initial solution s0 ∈ SL(x); (ii) the
second determines whether a given s is a feasible solution and (if s ∈ SL(x)) computes its objective
value fL(s, x); and (iii) the third returns either that s is locally optimal or a feasible solution s′ ∈
NL(s, x) with better objective value than s. If L is a maximization (resp. minimization) problem, a
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solution s is locally optimal if for all s′ ∈ NL(s, x), fL(s, x) ≥ fL(s′, x) (resp. fL(s, x) ≤ fL(s′, x)).
If s is not locally optimal, the third algorithm returns a solution s′ ∈ NL(s, x) with f(s, x) < f(s′, x)
(resp. f(s, x) > f(s′, x)). The complexity class PLS consists of all polynomial-time local search
problems. By abusing the terminology, we always refer to polynomial-time local search problem
simply as local search problems.

PLS Reductions and Completeness. A local search problem L is PLS-reducible to a local search
problem L′, if there are polynomial-time algorithms φ1 and φ2 such that (i) φ1 maps any instance
x ∈ IL of L to an instance φ1(x) ∈ IL′ of L′; (ii) φ2 maps any (solution s′ of instance φ1(x), instance
x) pair, with s′ ∈ SL′(φ1(x)), to a solution s ∈ SL(x); and (iii) for every instance x ∈ IL, if s′ is
locally optimal for φ1(x), then φ2(s′, x) is locally optimal for x.

By definition, if a local search problem L is PLS-reducible to a local search problem L′, a
polynomial-time algorithm that computes a local optimum of L′ implies a polynomial time algo-
rithm that computes a local optimum of L. Moreover, a PLS-reduction is transitive. As usual,
a local search problem Q is PLS-complete, if Q ∈ PLS and any local search problem L ∈ PLS is
PLS-reducible to Q.

Max-Cut and Node-Max-Cut. An instance of Max-Cut consists of an undirected edge-weighted
graph G(V,E), where V is the set of vertices and E is the set of edges. Each edge e is associated
with a positive weight we. A cut of G is a vertex partition (S, V \ S), with ∅ 6= S 6= V . We usually
identify a cut with one of its sides (e.g., S). We denote δ(S) = {{u, v} ∈ E : u ∈ S ∧ v 6∈ S}
the set of edges that cross the cut S. The weight (or the value) of a cut S, denoted w(S), is
w(S) =

∑
e∈δ(S)we. In Max-Cut, the goal is to compute an optimal cut S∗ of maximum value

w(S∗).
In Node-Max-Cut, each vertex v is associated with a positive weight wv and the weight of

each edge e = {u, v} is we = wuwv, i.e. equal to the product of the weights of e’s endpoints.
Again the goal is to compute a cut S∗ of maximum value w(S∗). As optimization problems, both
Max-Cut and Node-Max-Cut are NP-complete [26].

In this work, we study Max-Cut and Node-Max-Cut as local search problems under the flip
neighborhood. Then, they are referred to as Local-Max-Cut and Local-Node-Max-Cut. The
neighborhood N(S) of a cut (S, V \ S) consists of all cuts (S′, V \ S′) where S and S′ differ by
a single vertex. Namely, the cut S′ is obtained from S by moving a vertex from one side of the
cut to the other. A cut S is locally optimal if for all S′ ∈ N(S), w(S) ≥ w(S′). In Local-Max-
Cut (resp. Local-Node-Max-Cut), given an edge-weighted (resp. vertex-weighted) graph, the
goal is to compute a locally optimal cut. Clearly, both Max-Cut and Node-Max-Cut belong to
PLS. In the following, we abuse the terminology and refer to Local-Max-Cut and Local-Node-
Max-Cut as Max-Cut and Node-Max-Cut, for brevity, unless we need to distinguish between
the optimization and the local search problem.

Weighted Congestion Games. A weighted congestion game G consists of n players, where each
player i is associated with a positive weight wi, a set of resources E, where each resource e is
associated with a non-decreasing latency function `e : R≥0 → R≥0, and a non-empty strategy set
Σi ⊆ 2E for each player i. A game is linear if `e(x) = aex + be, for some ae, be ≥ 0, for all e ∈ E.
The identity latency function is `(x) = x. The player strategies are symmetric, if all players share
the same strategy set Σ, and asymmetric, otherwise.

We focus on network weighted congestion games, where the resources E correspond to the edges
of an underlying network G(V,E) and the player strategies are paths on G. A network game is
single-commodity, if G has an origin o and a destination d and the player strategies are all (simple)
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o − d paths. A network game is multi-commodity, if G has an origin oi and a destination di for
each player i, and i’s strategy set Σi consists of all (simple) oi − di paths. A single-commodity
network G(V,E) is series-parallel, if it either consists of a single edge (o, d) or can be obtained
from two series-parallel networks composed either in series or in parallel (see e.g., [35] for details
on composition and recognition of series-parallel networks).

A configuration ~s = (s1, . . . , sn) consists of a strategy si ∈ Σi for each player i. The congestion
se of resource e in configuration ~s is se =

∑
i:e∈si wi. The cost of resource e in ~s is `e(se). The

individual cost (or cost) ci(~s) of player i in configuration ~s is the total cost for the resources in her
strategy si, i.e., ci(~s) =

∑
e∈si `e(se). A configuration ~s is a pure Nash equilibrium (equilibrium or

PNE, for brevity), if for every player i and every strategy s′ ∈ Σi, ci(~s) ≤ ci(~s−i, s′) (where (~s−i, s
′)

denotes the configuration obtained from ~s by replacing si with s′). Namely, no player can improve
her cost by unilaterally switching her strategy.

Equilibrium Computation and Local Search. [17] shows that for linear weighted congestion games,
with latencies `e(x) = aex + be, Φ(~s) =

∑
e∈E(aes

2
e + bese) +

∑
iwi

∑
e∈si(aewi + be) changes by

2wi(ci(~s) − ci(~s−i, s
′)), when a player i switches from strategy si to strategy s′ in ~s. Hence, Φ

is a weighted potential function, whose local optimal (wrt. single player deviations) correspond
to PNE of the underlying game. Hence, equilibrium computation for linear weighted congestion
games is in PLS. Specifically, configurations corresponds to solutions, the neighborhood N(~s) of
a configuration ~s consists of all configurations (~s−i, s

′) with s′ ∈ Σi, for some player i, and local
optimality is defined wrt. the potential function Φ.

Max-Cut and Node-Max-Cut as Games. Local-Max-Cut and Local-Node-Max-Cut can
be cast as cut games, where players correspond to vertices of G(V,E), strategies Σ = {0, 1} are
symmetric, and configurations ~s ∈ {0, 1}|V | correspond to cuts, e.g., S(~s) = {v ∈ V : sv = 0}. Each
player v aims to maximize wv(~s) =

∑
e={u,v}∈E:su 6=sv we, that is the total weight of her incident

edges that cross the cut. For Node-Max-Cut, this becomes wv(~s) =
∑

u:{u,v}∈E∧su 6=sv wu, i.e.,
v aims to maximize the total weight of her neighbors across the cut. A cut ~s is a PNE if for all
players v, wv(~s) ≥ wv(~s−i, 1 − sv). Equilibrium computation for cut games is equivalent to local
optimum computation, and thus, is in PLS.

A cut ~s is a (1 + ε)-approximate equilibrium, for some ε > 0, if for all players v, (1 + ε)wv(~s) ≥
wv(~s−i, 1−sv). Note that the notion of (1+ε)-approximate equilibrium is stronger than the notion
of (1+ε)-approximate local optimum, i.e., a cut S such that for all S′ ∈ N(S), (1+ε)w(S) ≥ w(S′)
(see also the discussion in [6]).

3 Hardness of Computing Equilibria in Weighted Congestion Games

We next show that computing a PNE in weighted congestion games with linear latencies is PLS-
complete either for single-commodity series-parallel networks or for multi-commodity networks with
identity latency functions. Missing technical details can be found in Appendix A.

3.1 Weighted Congestion Games on Series-Parallel Networks

Theorem 1. Computing a pure Nash equilibrium in weighted congestion games on single-commodity
series-parallel networks with linear latency functions is PLS-complete.

Proof sketch. Membership in PLS follows from the potential function argument of [17]. To show
hardness, we present a reduction from Max-Cut (see also Appendix A.1).
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Figure 1: The series-parallel network Fij that corresponds to edge {i, j} ∈ A.

Figure 2: An example of the network G constructed in the proof of Theorem 1 for graph H(V,A),
with V = {1, 2, 3, 4} and A = {{1, 2}, {1, 3}, {1, 4}, {2, 4}}. G is a parallel composition of two parts,
each consisting of the smaller networks F12, F13, F14 and F24 (see also Figure 1) connected in series.

Let H(V,A) be an instance of Local-Max-Cut with n vertices and m edges. Based on H,
we construct a weighted congestion game on a single-commodity series-parallel network G with 3n
players, where for every i ∈ [n], there are three players with weight wi = 16i. Network G is a
parallel composition of two identical copies of a simpler series-parallel network. We refer to these
copies as G1 and G2. Each of G1 and G2 is a series composition of m simple series-parallel networks
Fij , each corresponding to an edge {i, j} ∈ A. Network Fij is depicted in Figure 1, where D is
assumed to be a constant chosen (polynomially) large enough. An example of the entire network
G is shown in Figure 2.

In each of G1 and G2, there is a unique path that contains all edges with latency functions
`i(x) = Dx/4i, for each i ∈ [n]. We refer to these paths as pui for G1 and pli for G2. In addition to
the edges with latency `i(x), pui and pli include all edges with latencies `ij(x) =

wijx
wiwj

=
wijx
16i+j , which

correspond to the edges incident to vertex i in H.
Due to the choice of the player weights and the latency slopes, a player with weight wi must

choose either pui or pli in any PNE (see also propositions 5 and 6 in Appendix A.1). We can prove
this claim by induction on the player weights. The players with weight wn = 16n have a dominant
strategy to choose either pun or pln, since the slope of `n(x) is significantly smaller than the slope
of any other latency `i(x). In fact, the slope of `n is so small that even if all other 3n − 1 players
choose one of pun or pln, a player with weight wn would prefer either pun or pln over all other paths.
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Therefore, we can assume that each of pun and pln are used by at least one player with weight
wn in any PNE, which would increase their latency so much that no player with smaller weight
would prefer them any more. The inductive argument applies the same reasoning for players with
weights wn−1, who should choose either pun−1 or pln−1 in any PNE, and subsequently, for players
with weights wn−2, . . . , w1. Hence, we conclude that for all i ∈ [n], each of pui and pli is used by at
least one player with weight wi.

Moreover, we note that two players with different weights, say wi and wj , go through the same
edge with latency `ij(x) =

wijx
wiwj

in G only if the corresponding edge {i, j} is present in H. The

correctness of the reduction follows the fact that a player with weight wi aims to minimize her cost
through edges with latencies `ij in G in the same way that in the Max-Cut instance, we want to
minimize the weight of the edges incident to a vertex i and do not cross the cut. Formally, we next
show that a cut S is locally optimal for the Max-Cut instance if and only if the configuration
where for every k ∈ S, two players with weight wk use puk and for every k 6∈ S, two players with
weight wk use plk is a PNE of the weighted congestion game on G.

Assume an equilibrium configuration and consider a player a of weight wk that uses puk together
with another player of weight wk (if this is not the case, vertex k is not included in S and we apply
the symmetric argument for plk). By the equilibrium condition, the cost of player a on puk is at most
her cost on plk, which implies that

m∑
k=1

2D16k

4k
+

∑
j:{k,j}∈A

wkj(2 · 16k + xuj 16j)

16k+j
≤

m∑
k=1

2D16k

4k
+

∑
j:{k,j}∈A

wkj(2 · 16k + xlj16j)

16k+j
,

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending on whether, for each vertex j connected
to vertex k in H, one or two players (of weight wj) use puj . Simplifying the inequality above, we
obtain that: ∑

j:{k,j}∈A

wkj(x
u
j − 1) ≤

∑
j:{k,j}∈A

wkj(x
l
j − 1) (1)

Let S = {i ∈ V : xui = 2}. By hypothesis, k ∈ S and the left-hand side of (1) corresponds to
the total weight of the edges in H that are incident to k and do not cross the cut S. Similarly, the
right-hand side of (1) corresponds to the total weights of the edges in H that are incident to k and
cross the cut S. Therefore, (1) implies that we cannot increase the value of the cut S by moving
vertex k from S to V \ S. Since this or its symmetric condition holds for any vertex k of H, the
cut (S, V \ S) is locally optimal. To conclude the proof, we argue along the same lines that any
locally optimal cut of H corresponds to a PNE in the weighted congestion game on G.

3.2 Weighted Congestion Games with Identity Latency Functions

We next prove that computing a PNE in weighted congestion games on multi-commodity networks
with identity latency functions is PLS-complete. Compared to Theorem 1, we allow for a signifi-
cantly more general strategy space, but we significantly restrict the latency functions, only allowing
for the player weights to be exponentially large.

Theorem 2. Computing a pure Nash equilibrium in weighted congestion games on multi-commodity
networks with identity latency functions is PLS-complete.
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Proof sketch. We use a reduction from Node-Max-Cut, which as we show in Theorem 4, is PLS-
complete. Our construction draws ideas from [1]. Missing technical details can be found in Ap-
pendix A.2.

Let H(V,A) be an instance of Node-Max-Cut. We construct a weighted congestion game on
a multi-commodity network G with identity latency functions `e(x) = x such that equilibria of the
congestion game correspond to locally optimal cuts of H.

At the conceptual level, each player i of the congestion game corresponds to vertex i ∈ V and
has weight wi (i.e., equal to the weight of vertex i in H). The key step is to construct a network
G (see also Figure 4) such that for every player i ∈ [n], there are two paths, say pui and pli, whose
cost dominate the cost of any other path for player i. Therefore, in any equilibrium, player i selects
either pui or pli (which corresponds to vertex i selecting one of the two sides of a cut). For every
edge {i, j} ∈ A, paths pui and puj (resp. paths pli and plj) have an edge euij (resp. elij) in common.

Intuitively, the cost of pui (resp. pli) for player i is determined by the set of players j, with j
connected to i in H, that select path puj (resp. plj).

Let us consider any equilibrium configuration ~s of the weighted congestion game. By the discus-
sion above, each player i ∈ [n] selects either pui or pli in ~s. Let S = {i ∈ [n] : player i selects pui in ~s}.
Applying the equilibrium condition, we next show that S is a locally optimal cut.

We let Vi = {j : {i, j} ∈ A} be the neighborhood of vertex i in H. By the construction of G,
the individual cost of a player i on path pui (resp. pli) in ~s is equal to K + |Vi|wi +

∑
j∈S∩Vi wj

(resp. K + |Vi|wi +
∑

j∈Vi\S wj), where K is a large constant that depends on the network G only.
Therefore, for any player i ∈ S, equilibrium condition for ~s implies that

K + |Vi|wi +
∑

j∈S∩Vi

wj ≤ K + |Vi|wi +
∑

j∈Vi\S

wj ⇒
∑

j∈S∩Vi

wj ≤
∑

j∈Vi\S

wj

Multiplying both sides by wi, we get that the total weight of the edges that are incident to i and
cross the cut S is no less than the total weight of the edges that are incident to i and do not cross
the cut. By the same reasoning, we reach the same conclusion for any player i 6∈ S. Therefore, the
cut (S, V \ S) is locally optimal for the Node-Max-Cut instance H(V,A).

To conclude the proof, we argue along the same lines that any locally optimal cut S for the
Node-Max-Cut instance H(V,A) corresponds to an equilibrium in the network G, by letting a
player i select path pui if and only if i ∈ S.

4 Computing Approximate Equilibria for Node-Max-Cut

We complement our PLS-completeness proof for Node-Max-Cut, in Section 5, with an efficient
algorithm computing (1 + ε)-approximate equilibria for Node-Max-Cut, when the number of
different vertex weights is a constant. We note that similar results are not known (and a similar
approach fails) for Max-Cut. Investigating if stronger approximation guarantees are possible for
efficiently computable approximate equilibria for Node-Max-Cut is beyond the scope of this work
and an intriguing direction for further research.

Given a vertex-weighted graph G(V,E) with n vertices and m edges, our algorithm, called
BridgeGaps (Algorithm 1), computes a (1 + ε)3-approximate equilibrium for a Node-Max-Cut,
for any ε > 0, in (m/ε)(n/ε)O(Dε) time, where Dε is the number of different vertex weights in G,
when the weights are rounded down to powers of 1+ε. We next sketch the algorithm and the proof
of Theorem 3. Missing technical details can be found in Appendix B.
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For simplicity, we assume that n/ε is an integer (we use dn/εe in Appendix B) and that vertices
are indexed in nondecreasing order of weight, i.e., w1 ≤ w2 ≤ · · · ≤ wn. BridgeGaps first rounds
down vertex weights to the closest power of (1 + ε). Namely, each weight wi is replaced by weight
w′i = (1 + ε)blog1+ε wic. Clearly, an (1 + ε)2-approximate equilibrium for the new instance G′ is an
(1 + ε)3-approximate equilibrium for the original instance G. The number of different weights Dε,
used in the analysis, is defined wrt. the new instance G′.

Then, BridgeGaps partitions the vertices ofG′ into groups g1, g2, . . ., so that the vertex weights
in each group increase with the index of the group and the ratio of the maximum weight in group gj
to the minimum weight in group gj+1 is no less than n/ε. This can be performed by going through
the vertices, in nondecreasing order of their weights, and assign vertex i+ 1 to the same group as
vertex i, if w′i+1/w

′
i ≤ n/ε. Otherwise, vertex i + 1 starts a new group. The idea is that for an

(1+ε)2-approximate equilibrium in G′, we only need to enforce the (1+ε)-approximate equilibrium
condition for each vertex i only for i’s neighbors in the highest-indexed group (that includes some
neighbor of i). To see this, let gj be the highest-indexed group that includes some neighbor of i
and let ` be the lowest indexed neighbor of i in gj . Then, the total weight of i’s neighbors in groups
g1, . . . , gj−1 is less than εw′`. This holds because i has at most n− 2 neighbors in these groups and
by definition, w′q ≤ (ε/n)w′`, for any i’s neighbor q in groups g1, . . . , gj−1. Therefore, we can ignore
all neighbors of i in groups g1, . . . , gj−1, at the expense of one more 1 + ε factor in the approximate
equilibrium condition (see also the proof of Lemma 2).

Since for every vertex i, we need to enforce its (approximate) equilibrium condition only for i’s
neighbors in a single group, we can scale down vertex weights in the same group uniformly (i.e.,
dividing all the weights in each group by the same factor), as long as we maintain the key property
in the definition of groups (i.e., that the ratio of the maximum weight in group gj to the minimum
weight in group gj+1 is no less than n/ε). Hence, we uniformly scale down the weights in each
group so that (i) the minimum weight in group g1 becomes 1; and (ii) for each j ≥ 2, the ratio of
the maximum weight in group gj−1 to the minimum weight in group gj becomes exactly n/ε (see
Appendix B for the details). This results in a new instance G′′ where the minimum weight is 1
and the maximum weight is (n/ε)Dε . Therefore, a (1 + ε)-approximate equilibrium in G′′ can be
computed, in a standard way, after at most (mε)(n/ε)2Dε ε-best response moves (see the proof of
Lemma 1).

Putting everything together and using ε′ = ε/7, so that (1 + ε′)3 ≤ 1 + ε, for all ε ∈ (0, 1],
we obtain the following (see Appendix B for the formal proof). We note that the running time of
BridgeGaps is polynomial, if Dε = O(1) (and quasipolynomial if Dε = poly(log n)).

Theorem 3. For any vertex-weighted graph G with n vertices and m edges and any ε > 0,
BridgeGaps computes a (1+ε)-approximate pure Nash equilibrium for Node-Max-Cut on G in
(m/ε)(n/ε)O(Dε) time, where Dε denotes the number of different vertex weights in G, after rounding
them down to the nearest power of 1 + ε.

5 PLS-Completeness of Node-Max-Cut

We outline the proof of Theorem 4 and the main differences of our reduction from known PLS
reductions to Max-Cut [9, 20, 33]. The technical details can be found in Appendix C.

Theorem 4. Local-Node-Max-Cut is PLS-complete.
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Figure 3: The general structure of the Node-Max-Cut instance constructed in the proof of Theo-
rem 4. Rectangles denote the main gadgets, which are defined and discussed in Appendix C, circles
denote vertices that participate in multiple gadgets, and circles with bold border denote groups of
n such vertices. The small red triangles are used to indicate the “information flow”.

As discussed in Section 2, the local search version of Node-Max-Cut is in PLS. To establish
PLS-hardness of Node-Max-Cut, we present a reduction from Circuit-Flip.

An instance of Circuit-Flip consists of a Boolean circuit C with n inputs and m outputs (and
wlog. only NOR gates). The value C(s) of an n-bit input string s is the integer corresponding to
the m-bit output string. The neighborhood N(s) of s consists of all n-bit strings s′ at Hamming
distance 1 to s (i.e., s′ is obtained from s by flipping one bit of s). The goal is to find a locally
optimal input string s, i.e., an s with C(s) ≥ C(s′), for all s′ ∈ N(s). Circuit-Flip was the first
problem shown to be PLS-complete in [25].

Given an instance C of Circuit-Flip, we construct below a vertex-weighted undirected graph
G(V,E) so that from any locally optimum cut of G, we can recover, in polynomial time, a locally
optimal input of C. The graph G consists of different gadgets (see Figure 3), which themselves
might be regarded as smaller instances of Node-Max-Cut. Intuitively, each of these gadgets
receives information from its “input” vertices, process this information, while carrying it through
its internal part, and outputs the results through its “output” vertices. Different gadgets are glued
together through their “input” and “output” vertices.

Our construction follows the flip-flop architecture (Figure 3), previously used e.g., in [9, 20, 33],
but requires more sophisticated implementations of several gadgets, so as to conform with the very
restricted weight structure of Node-Max-Cut. Next, we outline the functionality of the main
gadgets and how the entire construction works (see Appendix C.1).

Given a circuit C, we construct two Circuit Computing gadgets C` (` always stands for either
A or B), which are instances of Node-Max-Cut that simulate circuit C in the following sense:
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Each C` has a set I` of n “input” vertices, whose (cut) values correspond to the input string of
circuit C, and a set V al` of m “output” vertices, whose values correspond to the output string of
C on input I`. There is also a set Next` of n vertices whose values correspond to a n-bit string in
the neighborhood of I` of circuit value larger than that of I` (if the values of Next` coincide with
the values of I`, I` is locally optimal).

The Circuit Computing gadgets operate in two different modes, determined by Control`: the
write mode, when Control` = 0, and the compute mode, when Control` = 1. If C` operates in write
mode, the input values of I` can be updated to the values of the complementary Next set (i.e., IA
is updated to NextB, and vice versa). When, C` operates in the compute mode, C` simulates the
computation of circuit C and the values of Next` and V al` are updated to the corresponding values
produced by C. Throughout the proof, we let Real-V al(I`) denote the output string of circuit C
on input I` (i.e., the input of C takes the cut values of the vertices in I`), and let Real-Next(I`)
denote a neighbor of I` with circuit value larger than the circuit value of I`. If I` is locally optimal,
Real-Next(I`) = I`.

Our Circuit Computing gadgets CA and CB are based on the gadgets of Schäffer and Yannakakis
[33] (see also Figure 5 for an abstract description of them). Their detailed construction is described
in Section C.3 and their properties are summarized in Theorem 7.

The Comparator gadget compares V alA with V alB, which are intended to be Real-V al(IA) and
Real-V al(IB), respectively, and outputs 1, if V alA ≤ V alB, and 0, otherwise. The result of the
Comparator is stored in the value of the Flag vertex. If Flag = 1, the Circuit Computing gadget
CA enters its write mode and the input values in IA are updated to the neighboring solution of
IB, currently stored in NextB (everything operates symmetrically, if Flag = 0). Then, in the
next “cycle”, the input in IA leads CA to a V alA > V alB (and to a better neighboring solution
at NextA), Flag becomes 0, and the values of IB are updated to NextA. When we reach a local
optimum, IA and IB are stabilized to the same values.

The workflow above is implemented by the Copy and the Equality gadgets. The CopyB (resp.
CopyA) gadget updates the values of IA (resp. IB) to the values in NextB (resp. NextA), if
V alA ≤ V alB and Flag = 1 (resp. V alA > V alB and Flag = 0). When Flag = 1, the vertices
in TB take the values of the vertices in NextB. If the values of IA and NextB are different, the
Equality gadget sets the value of ControlA to 0. Hence, the Circuit Computing gadget CA enters
its write mode and the vertices in IA take the values of the vertices in NextB. Next, ControlA
becomes 1, because the values of IA and NextB are now identical, and CA enters its compute mode.
As a result, the vertices in V alA and NextA take the values of Real-V al(IA) and Real-Next(IA),
and we proceed to the next cycle.

A key notion used throughout the reduction is the bias that a vertex i experiences wrt. a vertex
subset. The bias of vertex i wrt. (or from) V ′ ⊆ V is

∣∣∑
j∈V 1

i ∩V ′
wj −

∑
j∈V 0

i ∩V ′
wj
∣∣, where V 1

i

(resp. V 0
i ) denotes the set of i’s neighbors on the 1 (resp. 0) side of the cut.

Technical Novelty. Next, we briefly discuss the points where our reduction needs to deviate
substantially from known PLS reductions to Max-Cut. Our discussion is unavoidlably technical
and assumes familiarity with (at least one of) the reductions in [9, 20, 33].

Our Circuit Computing gadgets are based on similar gadgets used e.g., in [33]. A key difference
is that our Circuit Computing gadgets are designed to operate with wControl (i.e., weight of the
Control vertex) arbitrarily smaller than the weight of any other vertex in the Circuit Computing
gadget. Hence, the Control vertex can achieve a very small bias wrt. the Circuit Computing gadget
(see Case 3, in Theorem 7), which in turn, allows us to carefully balance the weights in the Equality
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gadget. The latter weights should be large enough, so as to control the write and compute modes of
C`, and at the same time, small enough, so as not to interfere with the values of the input vertices
I`. The second important reason for setting wControl sufficiently small is that we need the Control
vertex to follow the “output” of the Equality gadget, and not the other way around.

The discussion above highlights a key difference between Max-Cut and Node-Max-Cut.
Previous reductions to Max-Cut (see e.g., the reduction in [33]) implement Control’s functionality
using different weights for its incident edges. More specifically, Control is connected with edges of
appropriately large weight to the vertices of the circuit gadget, so that it can control the gadget’s
mode, and with edges of appropriately small weight to vertices outside the circuit gadget, so that
its does not interfere with its other neighbors.

For Node-Max-Cut, we need to achieve the same desiderata with a single vertex weight.
We manage to do so by introducing a Leverage gadget (see Section C.2 and cases 1 and 2, in
Theorem 7). Our Leverage gadget reduces the influence of a vertex with large weight to a vertex
with small weight and is used internally in the Circuit Computing gadget. Hence, we achieve that
Control has small bias wrt. the circuit gadget and weight comparable to the weights of the circuit
gadget’s internal vertices.

Another important difference concerns the implementation of the red marks (denoting the in-
formation flow) between Flag and the Copy gadgets, in Figure 3. They indicate that the value of
Flag should agree with the output of the Comparator gadget. This part of the information flow is
difficult to implement, because the Comparator gadget and the Copy gadgets receive input from
NextA, NextB, V alA and V alB, where the vertex weights are comparable to the weights of the
output vertices in the Circuit Computing gadgets. As a result, the weights of the vertices inside
the Comparator gadget cannot become sufficiently larger than the weights of the vertices inside
the Copy gadgets. [33, 20, 9] connect Flag to the Copy gadgets with edges of sufficiently small
weight, which makes the bias of Flag from the Copy gadgets negligible compared against its bias
from Comparator. Again, the Leverage gadget comes to rescue. We use it internally in the Copy
gadgets, in order to decrease the influence of the vertices inside the Copy gadgets to Flag. As a
result, Flag ’s bias from the Copy gadgets becomes much smaller than its bias from Comparator
(see Lemma 9).

Another key technical difference concerns the design of the Comparator gadget. As stated
in Lemma 9, the Comparator gadget computes the result of the comparison Real-V al(IA) ≥
Real-V al(IA), even if some “input vertices” have incorrect values. In previous work [33, 20, 9],
Comparator guarantees correctness of the values in both NextB and V alB using appropriately
chosen edge weights. With the correctness of the input values guaranteed, the comparison is not
hard to implement. It is not clear if this decoupled architecture of the Comparator gadget can
be implemented in Node-Max-Cut, due to the special structure of edge weights. Instead, we
implement a new all at once Comparator, which ensures correctness to a subset of its input values
enough to perform the comparison correctly.

6 Conclusions and Future Work

In this work, we showed that equilibrium computation in linear weighted congestion games is
PLS-complete either on single-commodity series-parallel networks or on multi-commodity networks
with identity latency functions, where computing an equibrium for (unweighted) congestion games
is known to be easy. The key step for the latter reduction is to show that local optimum computa-
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tion for Node-Max-Cut, a natural and significant restriction of Max-Cut, is PLS-complete. The
reductions in Section 3 are both tight [33], thus preserving the structure of the local search graph.
In particular, for the first reduction, we have that (i) there are instances of linear weighted conges-
tion games on single-commodity series-parallel networks such that any best response sequence has
exponential length; and (ii) that the problem of computing the equilibrium reached from a given
initial state is PSPACE-hard.

However, our reduction of Circuit-Flip to Node-Max-Cut is not tight. Specifically, our
Copy and Equality gadgets allow that the Circuit Computing gadget might enter its compute mode,
before the entire input has changed. Thus, we might “jump ahead” and reach an equilibrium before
Circuit-Flip would allow, preventing the reduction from being tight.

Our work leaves leaves several interesting directions for further research. A natural first step is
to investigate the complexity of equilibrium computation for weighted congestion games on series-
parallel (or extension-parallel) networks with identity latency functions. An intriguing research
direction is to investigate whether our ideas (and gadgets) in the PLS-reduction for Node-Max-
Cut could lead to PLS-hardness results for approximate equilibrium computation for standard and
weighted congestion games (similarly to the results of Skopalik and Vöcking [34], but for latency
functions with non-negative coefficients). Finally, it would be interesting to understand better the
quality of efficiently computable approximate equilibria for Node-Max-Cut and the smoothed
complexity of its local optima.
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[24] Tobias Harks, Max Klimm, and Rolf H. Möhring. Characterizing the existence of potential
functions in weighted congestion games. Theory Computing Systems, 49(1):46–70, 2011.

[25] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[26] Richard M. Karp. Reducibility among combinatorial problems. In Proc. of Symposium on the
Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–103,
1972.

15
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A The Proofs of the Theorems of Section 3

A.1 The Proof of Theorem 1

We will reduce from the PLS-complete problem Max-Cut and given an instance of Max-Cut
we will construct a network weighted network Congestion Game for which the Nash equilibria will
correspond to maximal solutions of Max-Cut and vice versa. First we give the construction and
then we prove the theorem. For the formal PLS-reduction, which needs functions φ1 and φ2, φ1

returns the (polynomially) constructed instance described below and φ2 will be revealed later in
the proof.

Let H(V,E) be an edge-weighted graph of a Max-Cut instance and let n = |V | and m = |E|. In
the constructed network weighted CG instance there will be 3n players which will share n different
weights inside the set {16i : i ∈ [n]} so that for every i ∈ [n] there are exactly 3 players having
weight wi = 16i. All players share a common origin-destination pair o− d and choose o− d paths
on a series-parallel graph G. Graph G is a parallel composition of two identical copies of a series-
parallel graph. Call these copies G1 and G2. In turn, each of G1 and G2 is a series composition
of m different series-parallel graphs, each of which corresponds to the m edges of H. For every
{i, j} ∈ E let Fij be the series-parallel graph that corresponds to {i, j}. Next we describe the
construction of Fij , also shown in Fig. 1.

Fij has 3 vertices, namely oij , vij and dij and n+1 edges. For any k ∈ [n] other than i, j there is
an oij − dij edge with latency function `k(x) = Dx

4k
, where D serves as a big constant to be defined

later. There are also two oij−vij edges, one with latency function `i(x) = Dx
4i

and one with latency

function `j(x) = Dx
4j

. Last, there is a vij − dij edge with latency function `ij(x) =
wijx
wiwj

, where

wij is the weight of edge {i, j} ∈ E and wi and wj are the weights of players i and j, respectively,
as described earlier. Note that in every Fij and for any k ∈ [n] the latency function `k(x) = Dx

k
appears in exactly one edge. With Fij defined, an example of the structure of such a network G is
given in Fig. 2.

Observe that in each of G1 and G2 there is a unique path that contains all the edges with
latency functions `i(x), for i ∈ [n], and call these paths pui and pli for the upper (G1) and lower (G2)
copy respectively. Note that each of pui and pli in addition to those edges, contains some edges with
latency function of the form

wijx
wiwj

. These edges for path pui or pli is in one to one correspondence to

the edges of vertex i in H and this is crucial for the proof.
We go on to prove the correspondence of Nash equilibria inG to maximal cuts inH, i.e., solutions

of Max-Cut. We will first show that at a Nash equilibrium, a player of weight wi chooses either
pui or pli. Additionally, we prove that pui and pli will have at least one player (of weight wi). This
already provides a good structure of a Nash equilibrium and players of different weights, say wi
and wj , may go through the same edge in G (the edge with latency function wijx/wiwj) only if
{i, j} ∈ E. The correctness of the reduction lies in the fact that players in G try to minimize their
costs incurred by these type of edges in the same way one wants to minimize the sum of the weights
of the edges in each side of the cut when solving Max-Cut.

To begin with, we will prove that at equilibrium any player of weight wi chooses either pui or
pli and at least one such player chooses each of pui and pli. For that, we will need the following
proposition as a building block, which will also reveal a suitable value for D.

Proposition 5. For some i, j ∈ [n] consider Fij (Fig. 1) and assume that for all k ∈ [n], there are
either one, two or three players of weight wk that have to choose an oij − dij path. At equilibrium,
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all players of weight wk (for any k ∈ [n]) will go through the path that contains a edge with latency
function `k(x).

Proof. The proof is by induction on the different weights starting from bigger weights. For any
k ∈ [n] call ek the edge of Fij with latency function `k(x) and call eij the edge with latency function
wijx
wiwj

. For some k ∈ [n] assume that for all l > k all players of weight wl have chosen the path

containing el and lets prove that this is the case for players of weight wk as well. Since D is going
to be big enough, for the moment ignore edge eij and assume that in Fij there are only n parallel
paths each consisting of a single edge.

Let the players be at equilibrium and consider any player, say player K, of weight wk. The cost
she computes on ek is upper bounded by the cost of ek if all players with weight up to wk are on
ek, since by induction players with weight > wk are not on ek at equilibrium. This cost is upper

bounded by ck =
D(3

∑k
l=1 16l)

4k
=

3D 16k+1−1
16−1

4k
.

For any edge el for l < k, the cost that K computes is lower bounded by c< = D16k

4k−1 since she
must include herself in the load of el and the edge with the smallest slope in its latency function is
ek−1. But then ck < c<, since

ck < c< ⇔
3D 16k+1−1

16−1

4k
<
D16k

4k−1
⇔ 48 · 16k − 3 < 60 · 16k

Thus, at equilibrium players of weight wk cannot be on any of the el’s for all l < k. On the

other hand, the cost that K computes for el for l > k is at least c>l = D(16l+16k)
4l

, since by induction

el is already chosen by at least one player of weight wl. But then ck < c>l since

3D 16k+1−1
16−1

4k
<
D(16l + 16k)

4l
⇔

48 · 16k − 3 < 15
16l + 16k

4l−k
⇔

48 · 4l−k16k < 15 · 16l = 15 · 4l−k4l−k16k .

Thus, at equilibrium players of weight wk cannot be on any of the el’s for all l > k.
This completes the induction for the simplified case where we ignored the existence of eij ,

but lets go on to include it and define D so that the same analysis goes through. By the above,

c< − ck = D16k

4k−1 −
3D 16k+1−1

16−1

4k
> D and also for any l > k it is c>l − c

k = D(16l+16k)
4l

− 3D 16k+1−1
16−1

4k
> D

(this difference is minimized for l = k + 1). On the other hand the maximum cost that edge

eij may have is bounded above by cij =
wij3

∑n
l=1 16l

wiwj
, as eij can be chosen by at most all of the

players and note that cij ≤ 16n+1 maxq,r∈[n]wqr. Thus, one can choose a big value for D, namely
D = 16n+1 maxq,r∈[n]wqr, so that even if a player with weight wk has to add the cost of eij when

computing her path cost, it still is cij + ck < c< (since c< − ck > D ≥ cij) and for all l > k:
cij + ck < c>l (since c>l − c

k > D ≥ cij), implying that at equilibrium all players of weight wk may
only choose the path through ek.

Other than revealing a value for D, the proof of Porposition 5 reveals a crucial property: a
player of weight wk in Fij strictly prefers the path containing ek to the path containing el for any
l < k, independent to whether players of weight > wk are present in the game or not. With this in
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mind we go back to prove that at equilibrium any player of weight wi chooses either pui or pli and
at least one such player chooses each of pui and pli. The proof is by induction, starting from bigger
weights.

Assume that by the inductive hypothesis for every i > k, players with weights wi have chosen
paths pui or pli and at least one such player chooses each of pui and pli. Consider a player of weight
wk, and, wlog, let her have chosen an o − d path through G1. Since at least one player for every
bigger weight is by induction already in the paths of G1 (each in her corresponding pui ), Proposition
5 and the remark after its proof give that in each of the Fij ’s the player of weight wk has chosen
the subpath of puk , and this may happen only if her chosen path is puk . It remains to show that
there is another player of weight wk that goes through G2, which, with an argument similar to the
previous one, is equivalent to this player choosing path plk.

To reach a contradiction, let puk be chosen by all three players of weight wk, which leaves plk
empty. Since all players of bigger weights are by induction settled in paths completely disjoint to
plk, the load on this path if we include a player of weight wk is upper bounded by the sum of all

players of weight < wk plus wk, i.e., 16k + 3
∑k−1

t=1 16t = 16k + 316k−1
16−1 , which is less than the lower

bound on the load of puk , i.e., 3 · 16k (since puk carries 3 players of weight 16k). This already is a
contradiction to the equilibrium property, since puk and plk share the exact same latency functions
on their edges which, given the above inequality on the loads, makes puk more costly than plk for a
player of weight wk. To summarize, we have the following.

Proposition 6. At equilibrium, for every i ∈ [n] a player of weight wi chooses either pui or pli.
Additionally, each of pui and pli have been chosen by at least one player (of weight wi).

Finally, we prove that every equilibrium of the constructed instance corresponds to a maximal
solution of Max-Cut and vice versa. Given a maximal solution S of Max-Cut we will show that
the configuration Q that for every k ∈ S routes 2 players through puk and 1 player through plk and for
every k ∈ V \S routes 1 player through puk and 2 players through plk is an equilibrium. Conversely,
given an equilibrium Q the cut S = {k ∈ V : 2 players have chosen puk at Q} is a maximal solution
of Max-Cut.

Assume that we are at equilibrium and consider a player of weight wk that has chosen puk
and wlog puk is chosen by two players (of weight wk). By the equilibrium conditions the cost she
computes for puk is at most the cost she computes for plk, which, given Proposition 6, implies

m∑
i=1

2D16k

4k
+

∑
{k,j}∈E

wkj(2 · 16k + xuj 16j)

16k16j
≤

m∑
i=1

2D16k

4k
+

∑
{k,j}∈E

wkj(2 · 16k + xlj16j)

16k16j

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending whether, for any j : {k, j} ∈ E, one
or two players (of weight wj) respectively have chosen path puj . By canceling out terms, the above
implies ∑

{k,j}∈E

wkjx
u
j ≤

∑
{k,j}∈E

wkjx
l
j ⇔

∑
{k,j}∈E

wkj(x
u
j − 1) ≤

∑
{k,j}∈E

wkj(x
l
j − 1) (2)

Define S = {i ∈ V : xui = 2}. By our assumption it is k ∈ S and the left side of (2), i.e.,∑
{k,j}∈E wkj(x

u
j − 1), is the sum of the weights of the edges of H with one of its vertices being

k and the other belonging in S. Similarly, the right side of of (2), i.e.,
∑
{k,j}∈E wkj(x

l
j − 1) is

the sum of the weights of the edges with one of its vertices being k and the other belonging in
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V \S. But then (2) directly implies that for the (neighboring) cut S′ where k goes from S to V \S
it holds w(S) ≥ w(S′). Since k was arbitrary (given the symmetry of the problem), this holds
for every k ∈ [n] and thus for every S′ ∈ N(S) it is w(S) ≥ w(S′) proving one direction of the
claim. Observing that the argument works backwards we complete the proof. For the formal proof,
to define function φ2, given the constructed instance and one of its solutions, say s′, φ2 returns
solution s = {k ∈ V : 2 players have chosen puk at s′}.

A.2 The Proof of Theorem 2

We will reduce from the PLS-complete problem Node-Max-Cut. Our construction draws ideas
from Ackermann et al. [1]. For an instance of Node-Max-Cut we will construct a multi-
commodity network CG where every equilibrium will correspond to a maximal solution of Node-
Max-Cut and vice versa. For the formal PLS-reduction, which needs functions φ1 and φ2, φ1

returns the (polynomially) constructed instance described below and φ2 will be revealed later in
the proof.

We will use only the identity function as the latency function of every edge, but for ease of
presentation we will first prove our claim assuming we can use constant latency functions on the
edges. Then we will describe how we can drop this assumption and use only the identity function
on all edges, and have the proof still going through.

Let H(V,E) be the vertex-weighted graph of an instance of Node-Max-Cut with n = |V |
vertices and m = |E| edges. The network weighted congestion game has n players, with player i
having her own origin destination oi − di pair and weight wi equal to the weight of vertex i ∈ V .
In the constructed network there will be many oi − di paths for every player i but there will be
exactly two paths that cost-wise dominate all others. At equilibrium, every player will choose one
of these two paths that correspond to her. This choice for player i will be equivalent to picking the
side of the cut that vertex i should lie in order to get a maximal solution of Node-Max-Cut.

The initial network construction is shown in Fig. 4. It has n origins and n destinations. The
rest of the vertices lie either on the lower-left half (including the diagonal) of a n×n grid, which we
call the upper part, or the upper-left half of another n×n grid, which we call the lower part. Other
than the edges of the two half-grids that are all present, there are edges connecting the origins
and the destinations to the two parts. For i ∈ [n], origin oi in each of the upper and lower parts
connects to the first (from left to right) vertex of the row that has i vertices in total. For i ∈ [n],
destination di in each of the upper and lower parts connects to the i-th vertex of the row that has
n vertices in total. To define the (constant) latency functions, we will need 2 big constants, say d
and D = n3d, and note that D � d.

All edges that connect to an origin or a destination and all the vertical edges of the half-grids
will have constant D as their latency function, and any horizontal edge that lies on a row with
i vertices will have constant i · d as its latency function. To finalize the construction we will do
some small changes but note that, as it is now, player i has two shortest paths that are far less
costly (at least by d) than all other paths. These two paths are path pui that starts at oi, continues
horizontally through the upper part for as much as it can and then continues vertically to reach di,
and path pli which does the exact same thing through the lower part (for an example see Fig. 4a).
Each of pui and pli costs equal to ci = 2D + i(i − 1)d + (n − i)D. To verify this claim simply note
that (i) if a path tries to go through another origin or moves vertically away from di in order to
reach less costly horizontal edges, then it will have to pass through at least (2 + i− 1) + 2 vertical
edges of cost D and its cost from such edges compared to pui ’s and pli’s costs increases by at least
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Figure 4: (a) The construction of the reduction of Theorem 2. As an example, in orange are the
least costly o2 − d2 paths pu2 (up) and pl2 (down), each with cost equal to 2D + 2d+ (n− 2)D. (b)
The replacement of the red vertex at the i-th row and j-th column of the upper half-grid whenever
edge {i, j} ∈ E. A symmetric replacement happens in the lower half-grid.

2D = 2n3d, which is already more than paying all horizontal edges; and (ii) if it moves vertically
towards di earlier than pui or pli then its cost increases by at least d, since it moves towards more
costly horizontal edges.

To complete the construction if {i, j} ∈ E (with wlog i < j) we replace the (red) vertex at
position i, j of the upper and the lower half-grid (1, 1 is top left for the upper half-grid and lower
left for the lower half-grid) with two vertices connected with an edge, say euij and elij respectively,
with latency function `ij(x) = x, where the first vertex connects with the vertices at positions
i, j − 1 and i − 1, j of the grid and the second vertex connects to the vertices at positions i + 1, j
and i, j + 1 (see also Fig. 4b). Note that if we take d�

∑
k∈[n]wk, then, for any i ∈ [n], paths pui

and pli still have significantly lower costs than all other oi − di paths. Additionally, if {i, j} ∈ E
then pui and puj have a single common edge and pli and plj have a single common edge, namely euij
and elij respectively, which add some extra cost to the paths (added to ci defined above).

Assume we are at equilibrium. By the above discussion player i ∈ [n] may only have chosen
pui or pli. Let S = {i ∈ [n] : player i has chosen pui }. We will prove that S is a solution to Node-
Max-Cut. By the equilibrium conditions for every i ∈ S the cost of pui , say cui , is less than or
equal to the cost of pli, say cli. Given the choices of the rest of the players, and by defining Si to
be the neighbors of i in S, i.e. Si = {j ∈ S : {i, j} ∈ E}, and Vi be the neighbors of i in V , i.e.
Vi = {j ∈ V : {i, j} ∈ E}, cui ≤ cli translates to(

2D + i(i− 1)d+ (n− i)D
)

+
(∑
j∈Vi

wi +
∑
j∈Si

wj

)
≤
(

2D + i(i− 1)d+ (n− i)D
)

+
(∑
j∈Vi

wi +
∑

j∈Vi\Si

wj

)
,
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with the costs in the second and fourth parenthesis coming from the eij ’s for the different j’s. This
equivalently gives ∑

j∈Si

wj ≤
∑

j∈Vi\Si

wj ⇔
∑
j∈Si

wiwj ≤
∑

j∈Vi\Si

wiwj .

The right side of the last inequality equals to the weight of the edges with i as an endpoint that
cross cut S. The left side equals to the weight of the edges with i as an endpoint that cross the cut
S′, where S′ is obtained by moving i from S to V \ S. Thus for S and S′ it is w(S′) ≤ w(S). A
similar argument (or just symmetry) shows that if i ∈ V \S and we send i from V \S to S to form
a cut S′ it would again be w(S′) ≤ w(S). Thus, for any S′ ∈ N(S) it is w(S) ≥ w(S′) showing
that S is a solution to Node-Max-Cut. Observing that the argument works backwards we have
that from an arbitrary solution of Node-Max-Cut we may get an equilibrium for the constructed
weighted CG instance. For the formal part, to define function φ2, given the constructed instance
and one of its solutions, φ2 returns solution s = {i ∈ [n] : player i has chosen pui }.

What remains to show is how we can almost simulate the constant latency functions so that we
use only the identity function on all edges and, for every i ∈ [n], player i still may only choose paths
pui or pli at equilibrium. Observe that, since we have a multi-commodity instance we can simulate
(exponentially large) constants by replacing an edge {j, k} with a three edge path j− ojk−djk−k,
adding a complementary player with origin ojk and destination djk and weight equal to the desired
constant. Depending on the rest of the structure we may additionally have to make sure (by suitably
defining latency functions) that this player prefers going through edge {ojk, djk} at equilibrium.

To begin with, consider any horizontal edge {j, k} with latency function i · d (for some i ∈ [n])
and replace it with a three edge path j−ojk−djk−k. Add a player with origin ojk and destination
djk with weight equal to in3w, where w =

∑
i∈[n]wi, and let all edges have the identity function.

At equilibrium no matter the sum of the weights of the players that choose this three edge path,
the ojk − djk player prefers to use the direct ojk − djk edge or else she pays at least double the cost
(middle edge vs first and third edges). Thus the above replacement is (at equilibrium) equivalent
to having edge {j, k} with latency function 3x+ in3w = 3x+ i · d, for d = n3w.

Similarly, consider any edge {j, k} with latency function D and replace it with a three edge
path j − ojk − djk − k. Add a player with origin ojk and destination djk with weight equal to n3d
and let all edges have the identity function. Similar to above, this replacement is (at equilibrium)
equivalent to having edge {j, k} with latency function 3x+ n3d = 3x+D, for D = n3d.

With these definitions, at equilibrium, all complementary players will go through the correct
edges and, due to the complementary players, all edges that connect to an origin or a destination
will have cost ≈ D, all vertical edges of the half-grids will cost ≈ D, and any horizontal edge
that lies on a row with i vertices will cost ≈ i · d, where “≈” means at most within ±3w = ± 3d

n3

(note that w is the maximum weight that the oi − di players can add to each of the three edge
paths). Additionally, for every i ∈ [n], pui and pli are structurally identical, i.e., they have the same
structure, identical complementary players on their edges and share the same latency functions.
All the above make the analysis go through in the same way as in the simplified construction.

B Missing Technical Details from the Analysis of BridgeGaps

In this section, we present an algorithm that computes approximate equilibria for Node-Max-
Cut. Let G(V,E) be vertex-weighted graph with n vertices and m edges, and consider any ε > 0.
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The algorithm, called BridgeGaps and formally presented in Algorithm 1, returns a (1 + ε)3-
approximate equilibrium (Lemma 2) for G in time O(mε d

n
ε e

2Dε) (Lemma 1), where Dε is the number
of different rounded weights, i.e., the weights produced by rounding down each of the original
weights to its closest power of (1 + ε). To get a (1 + ε)-approximate equilibrium, for ε < 1, it
suffices to run the algorithm with ε′ = ε

7 .

Description of the Algorithm. BridgeGaps first creates an instance G′ with weights rounded
down to their closest power of (1 + ε), i.e., weight wi is replaced by weight w′i = (1 + ε)blog1+ε wic

in G′, and then computes a (1 + ε)2-approximate equilibrium for G′. Observe that any (1 + ε)2-
approximate equilibrium for G′ is a (1 + ε)3-approximate equilibrium for G, since∑

j∈Vi:si=sj

wj ≤ (1 + ε)
∑

j∈Vi:si=sj

w′j ≤ (1 + ε)3
∑

j∈Vi:si 6=sj

w′j ≤ (1 + ε)3
∑

j∈Vi:si 6=sj

wj ,

where Vi denotes the set of vertices that share an edge with vertex i, with the first and third
inequalities following from the rounding and the second one following from the equilibrium condition
for G′.

To compute a (1 + ε)2-approximate equilibrium, BridgeGaps first sorts the vertices in in-
creasing weight order and note that, wlog, we may assume that w′1 = 1, as we may simply divide
all weights by w′1. Then, it groups the vertices so that the fraction of the weights of consecutive
vertices in the same group is bounded above by dn/εe, i.e., for any i, vertices i and i+ 1 belong in

the same group if and only if
w′i+1

w′i
≤ dnε e. This way, groups gj are formed on which we assume an

increasing order, i.e., for any j, the vertices in gj have smaller weights than those in gj+1.
The next step is to bring the groups closer together using the following process which will gen-

erate weights w′′i . For all j, all the weights of vertices on heavier groups, i.e., groups gj+1, gj+2, . . .,

are divided by dj = 1
dn/εe

wmin
j+1

wmax
j

so that
wmin

j+1 /dj
wmax

j
= dnε e, where wminj+1 is the smallest weight in gj+1

and wmaxj is the biggest weight in gj . For vertex i, let the resulting weight be w′′i , i.e., w′′i =
w′i

Πj∈Iidj
,

where Ii contains the indexes of groups below i’s group, and keep the increasing order on the vertex

weights. Observe that by the above process for any i:
w′′i+1

w′′i
≤ dnε e, either because i and i + 1

are in the same group or because the groups are brought closer together. Additionally if i and

i+ 1 belong in different groups then
w′′i+1

w′′i
= dnε e, implying that for vertices i, i′ in different groups

with w′′i′ > w′′i it is
w′′

i′
w′′i
≥ dnε e. Thus, if we let Dε be the number of different weights in G′, i.e.,

Dε = |{w′i : i vertex of G′}|, then the maximum weight w′′n is w′′n = w′′n
w′′n−1

w′′n−1

w′′n−2
. . .

w′′2
w′′1
≤ dnε e

Dε

In a last step, using the w′′ weights, BridgeGaps starts from an arbitrary configuration (a 0-1
vector) and lets the vertices play ε-best response moves, i.e., as long as there is an index i of the
vector violating the (1 + ε)-approximate equilibrium condition, BridgeGaps flips its bit. When
there is no such index BridgeGaps ends and returns the resulting configuration.

Lemma 1. For any ε > 0, BridgeGaps terminates in time O(mε d
n
ε e

2Dε)

Proof. We are going to show the claimed bound for the last step of BridgeGaps since all previous
steps can be (naively) implemented to end in O(n2) time.

The proof relies on a potential function argument. For any ~s ∈ {0, 1}n, let

Φ(~s) =
1

2

∑
i∈V

∑
j∈Vi:si=sj

w′′i w
′′
j .
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Algorithm 1: BridgeGaps, computing (1 + ε)3-approximate equilibria

Input: A Node-Max-Cut instance G(V,E) with n vertices and weights {wi}i∈[n] sorted
increasingly with w1 = 1, and an ε > 0.

Output: A vector ~s ∈ {0, 1}n partitioning the vertices in two sets.

1 for i ∈ [n] do wi := (1 + ε)blog1+ε wic

2 groups:= 1;
insert w1 into ggroups; . Assign the weights into groups {gj}j∈[groups]

for i ∈ {2, ..., n} do
if wi

wi−1
> dnε e then groups++;

insert wi into ggroups;

3 for j ∈ {2, ..., groups} do
wminj := minimum weight of group gj ; . Bring the groups dnε e close
wmaxj−1 := maximum weight of group gj−1;

dj = 1
dn/εe

wmin
j+1

wmax
j

for wi ∈ gj ∪ . . . ∪ ggroup do wi := wi/dj ;

4 ~s:= an arbitrary {0, 1}n vector;
5 For all i, let Vi = {j : {i, j} ∈ E} be the neighborhood of i in G;

while ∃i :
∑

j∈Vi:si=sj wj > (1 + ε)
∑

j∈Vi:si 6=sj wj do

si := 1− si; . Moves towards equilibrium

6 return ~s.

Since for the maximum weight w′′n it is w′′n ≤ dnε e
Dε , it follows that Φ(~s) ≤ mdnε e

2Dε . On the other
hand whenever an ε-best response move is made by BridgeGaps producing ~s ′ from some ~s, Φ
decreases by at least ε, i.e., Φ(~s)− Φ(~s ′) ≥ ε. This is because, if i is the index flipping bit from ~s
to ~s ′, then by the violation of the (1 + ε)-equilibrium condition

w′′i
∑

j∈Vi:si=sj

w′′j ≥ w′′i (1 + ε)
∑

j∈Vi:si 6=sj

w′′j ⇒
∑

j∈Vi:si=sj

w′′i w
′′
j −

∑
j∈Vi:s′i=s′j

w′′i w
′′
j ≥ ε,

since
∑

j∈Vi:s′i=s′j
w′′i w

′′
j ≥ 1, and

Φ(~s)− Φ(~s ′) =
∑

j∈Vi:si=sj

w′′i w
′′
j −

∑
j∈Vi:s′i=s′j

w′′i w
′′
j ≥ ε.

Consequently, the last step of the algorithm will do at most
mdn

ε
e2Dε

ε ε-best response moves.

Lemma 2. For any vertex-weight graph G and any ε > 0, BridgeGaps returns a (1 + ε)3-
approximate equilibrium for Node-Max-Cut in G.

Proof. Clearly, BridgeGaps terminates with a vector ~s that is a (1+ε)-approximate equilibrium for
the instance with the w′′ weights. It suffices to show that ~s is a (1 + ε)2-approximate equilibrium
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for G′, i.e., the instance with the w′ weights, since this will directly imply that ~s is a (1 + ε)3-
approximate equilibrium for G, as already discussed at the beginning of the description of the
algorithm.

Consider any index i and let V h
i be the neighbors of i that belong in the heaviest group among

the neighbors of i. By the (1 + ε)-approximate equilibrium condition it is∑
j∈Vi\V h

i :si=sj

w′′j +
∑

j∈V h
i :si=sj

w′′j ≤ (1 + ε)
( ∑
j∈Vi\V h

i :si 6=sj

w′′j +
∑

j∈V h
i :si 6=sj

w′′j
)
. (3)

Recalling that for every j, w′′j =
w′j

Πk∈Ij dk
, where Ij contains the indexes of groups below j’s group,

and letting D = Πk∈Ijdk, for a j ∈ V h
i , gives∑

j∈Vi\V h
i :si=sj

w′j +
∑

j∈V h
i :si=sj

w′j ≤ D
( ∑
j∈Vi\V h

i :si=sj

w′′j +
∑

j∈V h
i :si=sj

w′′j
)

(4)

On the other hand for any j and j′, if j′ belongs in a group lighter than j then by construction
w′′j
w′′

j′
≥ n

ε (recall the way the groups were brought closer), which gives nw′′j′ ≤ εw′′j , yielding

∑
j∈Vi\V h

i :si 6=sj

w′′j +
∑

j∈V h
i :si 6=sj

w′′j ≤ (1 + ε)
∑

j∈V h
i :si 6=sj

w′′j (5)

Using equations (4), (3) and (5), in this order, and that D
∑

j∈V h
i :si 6=sj w

′′
j =

∑
j∈V h

i :si 6=sj w
′
j ≤∑

j∈Vi:si 6=sj w
′
j , we get ∑

j∈Vi:si=sj

w′j ≤ (1 + ε)2
∑

j∈Vi:si 6=sj

w′j

as needed.

Remark. We observe the following trade off: we can get a (1 + ε)2-approximate equilibrium if we
skip the rounding step at the beginning of the algorithm but then the number of different weights
Dε and thus the running time of the algorithm may increase. Also, if ∆ is the maximum degree
among the vertices of G, then replacing n

ε with ∆
ε in the algorithm and following a similar analysis

gives O(mε d
∆
ε e

2Dε) running time.

C Missing Technical Details from the Proof of Theorem 4

In the following sections, we present all the technical details for the proof of Theorem 4. Recall
that our Node-Max-Cut instance is composed of the following gadgets:

1. Leverage gadgets that are used to transmit nonzero bias to vertices of high weight.

2. Two Circuit Computing gadgets that calculate the values and next neighbors of solutions.

3. A Comparator gadget.

4. Two Copy gadgets that transfer the solution of one circuit to the other, and vice versa.
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5. Two Control gadgets that determine the (write or compute) mode in which the circuit oper-
ates.

Note that whenever we wish to have a vertex of higher weight that dominates all other vertices
of lower weight, we multiply its weight with 2kN for some constant k. We then choose N sufficiently
large so that, for all k, vertices of weight 2kN dominate all vertices of weight 2(k−1)N . Henceforth,
we will assume N has been chosen sufficiently large.

In what follows, when we refer to the value of the circuit C, we mean the value that the
underlying Circuit-Flip instance C would output, given the same input. Moreover, when we
refer to the value of a vertex, we mean the side of the cut the vertex lies on. There are two values,
0 and 1, one for each side of the cut.

As usual in previous work, we assume two supervertices, a 1-vertex and a 0-vertex that share
an edge and have a huge weight, which dominates the weight of any other vertex, e.g., 21000N . As a
result, at any local optimum, these vertices take complementary values. When we write, e.g., that
Flag = 1 or Control = 1, we mean that Flag or Control takes the same value as the 1-vertex. This
convention is used throughout this section, always with the same interpretation. Our construction
assumes that certain vertices always take a specific value, either 0 or 1. We can achieve this by
connecting such vertices to the supervertex of complementary value.

C.1 Outline of the Proof of Theorem 4

We start with a proof-sketch of our reduction, where we outline the key properties of our gadgets
and the main technical claims used to establish the correctness of the reduction.

At a high level, the proof of Theorem 4 boils down to showing that at any local optimum of the
Node-Max-Cut instance of Figure 3, in which Flag = 1, the following hold:

1. IA = NextB

2. NextB = Real-Next(IB)

3. Real-Val(IB) ≥ Real-Val(IA)

Once these claims are established, we can be sure that the string defined by the values of
vertices in IB defines a locally optimal solution for Circuit-Flip. This is because the claims
above directly imply that Real-Val(IB) ≥ Real-Val (Real-Next (IB)), which means that there is no
neighboring solution of IB of strictly better value. Obviously, we establish symmetrically the above
claims when Flag = 0.

In the remainder of this section, we discuss the main technical claims required for the proof
of Theorem 4. To do so, we follow a three step approach. We first discuss the behavior of the
Circuit Computing gadgets CA and CB. We then reason why IA = NextB, which we refer to as
the Feedback Problem. Finally we establish the last two claims, which we refer to as Correctness of
the Outputs.

Circuit-Computing Gadgets. The Circuit Computing gadgets CA and CB are the basic primitives
of our reduction. They are based on the gadgets introduced by Schäffer and Yannakakis [33] to
establish PLS-completeness of Max-Cut. This type of gadgets can be constructed so as to simulate
any Boolean circuit C.
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Figure 5: Circuit Computing gadgets. The dashed circles, called I and O, represent all input and
output vertices, respectively. This type of (“hyper”-)vertex is represented in the rest of the figures
with a bold border.

The most important vertices are those corresponding to the input and the output of the sim-
ulated circuit C and are denoted as I,O. Another important vertex is Control, which allows the
gadget to switch between the write and the compute mode of operation. Figure 5 is an abstract
depiction of the Circuit Computing gadgets.

The main properties of the gadget are described in Theorem 7. Its proof is presented in Sec-
tion C.3, where the exact construction of the gadget is presented. We recall here the definition of
bias, first discussed in Section 5.

Definition (Bias). The bias that a vertex i experiences with respect to V ′ ⊆ V is∣∣∣∣∣∣
∑

j∈V 1
i ∩V ′

wj −
∑

j∈V 0
i ∩V ′

wj

∣∣∣∣∣∣ ,
where V 0

i (resp. V 1
i ) is the set of neighbors of vertex i on the 0 (resp. 1) side of the cut.

Bias is a key notion in the subsequent analysis. The gadgets presented in Figure 3 are a subset
of the vertices of the overall instance. Each gadget is composed by the “input vertices”, the internal
vertices and the “output vertices”. Moreover as we have seen each gadget stands for a “circuit”
with some specific functionality (computing, comparing, copying e.t.c.). Each gadget is specifically
constructed so as at any local optimum of the overall instance, the output vertices of the gadget
experience some bias towards some values that depend on the values of the input vertices of the
gadget. Since the output vertices of a gadget may also participate as input vertices at some other
gadgets, it is important to quantify the bias of each gadget in order to prove consistency in our
instance. Ideally, we would like to prove that at any local optimum the bias that a vertex experiences
from a gadget in which it is an output vertex, is greater than the sum of the biases of the gadgets
in which it participates as input vertex.

Theorem 7 describes the local optimum behavior of the input vertices I` and output vertices
Next`, V al` of the CircuitComputing gadgets C`.

Theorem 7. At any local optimum of the Node-Max-Cut of Figure 3.

1. If Control` = 1 and the vertices of Next`,V al` experience 0 bias from any other gadget beyond
C` then:

• Next` = Real-Next(I`)
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• Val` = Real-Val(I`)

2. If Control` = 0 then each vertex in I` experiences 0 bias from the internal vertices of C`.

3. Control` experiences wControl` bias from the internal vertices of C`.

Case 1 of Theorem 7 describes the compute mode of the Circuit Computing gadgets. At any
local optimum with ControlA = 1, and with the output vertices of CA being indifferent with
respect to other gadgets, then CA computes its output correctly. Note that because the vertices
in NextA,ValA are also connected with internal vertices of other gadgets (CopyA and Comparator
gadgets) that may create bias towards the opposite value, the second condition is indispensable.
Case 2 of Theorem 7 describes the write mode. If at a local optimum ControlA = 0 then the
vertices in IA have 0 bias from the CA gadget and as a result their value is determined by the
biases of the CopyB gadget and the Equality gadget. Case 3 of Theorem 7 describes the minimum
bias that the equality gadget must pose to the Control vertices so as to make the computing gadget
flip from one mode to the other. As we shall see, the weights wControlA = wControlB = wControl are
selected much smaller than the bias the Control` vertices experience due to the Equality gadgets,
meaning that the Equality gadgets control the write mode and the compute mode of the Circuit
Computing gadgets no matter the values of the vertices in C` gadgets.

Solving the Feedback problem. Next, we establish the first of the claims above, i.e., at any local
optimum of Node-Max-Cut instance of Figure 3 in which Flag = 1, NextB is written to IA and
vice versa when Flag = 0. This is formally stated in Theorem 8.

Theorem 8. Let a local optimum of the Node-Max-Cut instance in Figure 3.

• If Flag = 1 then IA = NextB

• If Flag = 0 then IB = NextA

We next present the necessary lemmas for proving Theorem 8.

Lemma 3. Let a local optimum of the Node-Max-Cut instance in Figure 3. Then,

• ControlA = (IA = TB)

• ControlB = (IB = TA)

In Section C.4, we present the construction of the Equality gadget. This gadget is specifically
designed so that at any local optimum, its internal vertices generate bias to ControlA towards
the value of the predicate (IA = TB). Notice that if we multiply all the internal vertices of the
equality gadget with a positive constant, the bias ControlA experiences towards value (IA = TB)
is multiplied by the same constant (see Definition ). Lemma 3 is established by multiplying these
weights with a sufficiently large constant so as to make this bias larger than wControlA. We remind
that by Theorem 7, the bias that ControlA experiences from CA is wControlA. As a result, the
local optimum value of ControlA is (IA = NextB) no matter the values of ControlA ’s neighbors
in the C1 gadget. The red mark between ControlA and the CA gadget in Figure 3 denotes the
“indifference” of ControlA towards the values of the CA gadget (respectively for ControlB).

In the high level description of the Node-Max-Cut instance of Figure 3, when Flag = 1 the
values of NextB is copied to IA as follows: At first TB takes the value of NextB. If IA 6= TB then
ControlA = 0 and the CA gadget switches to write mode. Then the vertices in IA takes the values
of the vertices in NextB. This is formally stated in Lemma 4.
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Lemma 4. At any local optimum point of the Node-Max-Cut instance of Figure 3:

• If Flag = 1, i.e. NextB writes on IA, then

1. TB = NextB

2. If ControlA = 0 then IA = TB = NextB

• If Flag = 0 i.e. NextA writes on IB, then

1. TA = NextA

2. If ControlB = 0 then IB = TA = NextA

In Section C.5, we present the construction of the Copy gadgets. At a local optimum where
Flag = 1, this gadget creates bias to the vertices in IA, TB vertices towards adopting the values of
NextB. Since IA, TB also participate in the Equality gadget in order to establish Lemma 4 we want
to make the bias of the CopyB gadget larger than the bias of the Equality gadget. This is done by
again by multiplying the weights of the internal vertices of CopyB with a sufficiently large constant.
The “indifference” of the vertices in IA, TB with respect to the values of the internal vertices of the
Equality gadget is denoted in Figure 3 by the red marks between the vertices in IA, TB and the
Equality gadget.

In Case 2 of Lemma 4 the additional condition ControlA = 0 is necessary to ensure that
IA = NextB . The reason is that the bias of the Copy gadget to the vertices in IA is sufficiently
larger than the bias of the Equality gadget to the vertices in IA, but not necessarily to the bias of
the CA gadget. The condition ControlA = 0 ensures 0 bias of the CA gadget to the vertices IA,
by Theorem 7. As a result the values of the vertices in IA are determined by the values of their
neighbors in the CopyB gadget.

Proof of Theorem 8. Let a local optimum in which Flag = 1. Let us assume that IA 6= NextB . By
Case 1 of Lemma 4, TB = NextB . As a result, IA 6= TB, implying that ControlA = 0 (Lemma 3).
Now, by Case 2 of Lemma 4 we have that IA = NextB , which is a contradiction. The exact same
analysis holds when Flag = 0.

Correctness of the Output Vertices. In the previous section we discussed how the Feedback problem
(IA = NextB when Flag = 1) is solved in our reduction. We now exhibit how the two last cases of
our initial claim are established.

Theorem 9. At any local optimum of the instance of Node-Max-Cut of Figure 3:

• If Flag = 1

1. Real-Val(IA) ≤ Real-Val(IB)

2. NextB = Real-Next(IB)

• If Flag = 0

1. Real-Val(IB) ≤ Real-Val(IA)

2. NextA = Real-Next(IA)
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Figure 6: Since Flag = 1, any internal vertex of the CB gadget has 0 bias with respect to all the
other gadgets. As a result, Theorem 7 applies.

At first we briefly explain the difficulties in establishing Theorem 9. In the following discussion
we assume that Flag = 1, since everything we mention holds symmetrically for Flag = 0. Observe
that if Flag = 1 we know nothing about the value of ControlB and as a result we cannot guar-
antee that NextB = Real-Next(IB) or ValB = Real-Val(IB). But even in the case of CA where
ControlA = 1 due to Theorem 8, the correctness of the vertices in NextA or ValA cannot be guar-
anteed. The reason is that in order to apply Theorem 7, NextA and ValA should experience 0 bias
with respect to any other gadget they are connected to. But at a local optimum, these vertices
may select their values according to the values of their heavily weighted neighbors in the CopyA
and the Comparator gadget.

The correctness of the values of the output vertices, i.e. NextA = Real-Next(IA) and ValA =
Real-Val(IA), is ensured by the design of the CopyA and the Comparator gadgets. Apart from
their primary role these gadgets are specifically designed to cause 0 bias to the output vertices of
the Circuit Computing gadget to which the better neighbor solution is written. In other words
at any local optimum in which Flag = 1 and any vertex in CA: the total weight of its neighbors
(belonging in the CopyA or the Comparator gadget) with value 1 equals the total weight of its
neighbors (belonging in the CopyA or the Comparator gadget) with value 0.

The latter fact is denoted by the green marks in Figure 6 and permits the application of Case 1
of Theorem 7. Lemma 5 and 6 formally state these “green marks”.

Lemma 5. At any local optimum of the Node-Max-Cut instance of Figure 3:

• If Flag = 1, then any vertex in NextA experience 0 bias with respect to the CopyA gadget.

• If Flag = 0 then then any vertex in NextB experience 0 bias wrt. the CopyB gadget.
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Lemma 6. Let a local optimum of the instance of Node-Max-Cut of Figure 3:

• If Flag = 1 then all vertices of CA experience 0 bias wrt. the Comparator gadget.

• If Flag = 0 then all vertices of CB experience 0 bias wrt. the Comparator gadget.

Remark. The reason that in Lemma 6 we refer to all vertices of CA (respectively CB) and not just
to the vertices in V alA (respectively V alB) is that in the constructed instance of Node-Max-Cut
of Figure 3, we connect internal vertices of the CA gadget with internal vertices of the Comparator
gadget. This is the only point in our construction where internal vertices of different gadgets share
an edge and is denoted in Figure 3 and 6 with the direct edge between the CA gadget and the
Comparator gadget.

Now using Lemma 5 and Lemma 6 we can prove the correctness of the output vertices NextA,ValA
when Flag = 1 i.e. NextA = Real-Next(IA) and ValA = Real-Val(IB) (symmetrically for the ver-
tices in NextB ,ValB when Flag = 0).

Lemma 7. Let a local optimum of the instance of Node-Max-Cut of Figure 3:

• If Flag = 1 then NextA = Real-Next(IA), ValA = Real-Val(IA).

• If Flag = 0 then NextB = Real-Next(IB), ValB = Real-Val(IB).

Proof. We assume that Flag = 1 (for Flag = 0 the exact same arguments hold). By Theorem 8
we have IA = NextB and by Lemma 4 we have that TB = NextB . As a result, IA = TB and by
Lemma 3 ControlA = 1. Lemma 5 and Lemma 6 guarantee that the vertices in NextA,ValA of
CA experience 0 bias towards all the other gadgets of the construction and since ControlA = 1, we
can apply Case 1 of Theorem 7 i.e. ValA = Real-Val(IA) and NextA = Real-Next(IA).

Up next we deal with the correctness of the values of the output vertices in ValB and NextB
when Flag = 1. We remind again that, even if at a local optimum ControlB = 1, we could not
be sure about the correctness of the values of these output vertices due to the bias their neighbors
in the CopyB and the Comparator gadget (Theorem 7 does not apply). The Comparator gadget
plays a crucial role in solving this last problem. Namely, it also checks whether the output vertices
in NextB have correct values with respect to the input IB and if it detects incorrectness it outputs
0. This is done by the connection of some specific internal vertices of the CA, CB gadgets with the
internal vertices of the Comparator gadget (Figure 3: edges between CA, CB and Comparator).

Lemma 8. At any local optimum of the Node-Max-Cut instance of Figure 3:

• If Flag = 1 then NextB = Real-Next(IB)

• If Flag = 0 then NextA = Real-Next(IA)

We highlight that the correctness of values of the output vertices NextB, i.e. NextB = Real-Next(IB),
is not guaranteed by application of Theorem 7 (as in the case of correctness of NextA, V alA), but
from the construction of the Comparator gadget. Lemma 8 is proven in Section C.6 where the exact
construction of this gadget is presented. Notice that Lemma 8 says nothing about the correctness
of the values of the output vertices in V alB. As we latter explain this cannot be guaranteed in
our construction. Surprisingly enough, the Comparator outputs the right outcome of the predicate
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(Real-Val(IA) ≤ Real-Val(IB)) even if ValB 6= Real-Val(IB). The latter is one of our main tech-
nical contributions in the reduction that reveals the difficulty of Node-Max-Cut. The crucial
differences between our Comparator and the Comparator of the previous reductions [33, 20, 9] are
discussed in the end of the section. Lemma 9 formally states the robustness of the outcome of the
Comparator even with “wrong values” in the vertices of V alB and is proven in Section C.6.

Lemma 9. At any local optimum of the Node-Max-Cut instance of Figure 3:

• If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB) then
Real-V al(IA) ≤ Real-V al(IB).

• If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA)
then Real-V al(IB) ≤ Real-V al(IA).

We are now ready to prove Theorem 9.

Proof of Theorem 9. Let a local optimum of the instance of Figure 3 with Flag = 1 (respectively
for Flag = 0). By Lemma 8, NextB = Real-Next(IB) and thus Case 1 is established. Moreover by
Lemma 7, NextA = Real-Next(IA) and ValA = Real-Val(IA). As a result, Lemma 9 applies and
Real-Val(IA) ≤ Real-Val(IB) (Case 2 of Theorem 9)

Putting Everything Together. Having established Theorem 8 and 9, the PLS-completeness of
Node-Max-Cut follows easily. For the sake of completeness, we show how we can put everything
together and conclude the proof Theorem 4.

Proof of Theorem 4. For a given circuit C of the Circuit-Flip, we can construct in polynomial
time the instance of Node-Max-Cut of Figure 3. Let a local optimum of this instance. Without
loss of generality, we assume that Flag = 1. Then, by Theorem 8 and Theorem 9, IA = NextB,
NextB = Real −Next(IB) and Real − V al(IA) ≤ Real − V al(IB). Hence, we have that

Real − V al(IB) ≥ Real − V al(IA)

= Real − V al(NextB)

= Real − V al (Real −Next(IB))

But if IB 6= Real − Next(IB), then Real − V al(IB) > Real − V al (Real −Next(IB)) which is a
contradiction. Thus IB = Real−Next(IB) = IB, meaning that the string defined by the values of
IB is a locally optimal solution for the Circuit-Flip problem.

In the following sections, we present the gadget constructions in detail and all the formal proofs
missing from this section.

C.2 The Leverage Gadget

The Leverage gadget is a basic construction in the PLS completeness proof. This gadget solves a
basic problem in the reduction. Suppose that we have a vertex with relatively small weight A and
we want to bias a vertex with large weight B. For example, the large vertex might be indifferent
towards its other neighbors, which would allow even a small bias from the small vertex to change
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Figure 7: The Leverage Gadget.

its state. We would also like to ensure that the large vertex does not bias the smaller one with very
large weight, in order for the smaller to retain its value.

This problem arises in various parts of the PLS proof. For example, we would like the outputs
of a circuit to be fed back to the inputs of the other one. The outputs have very small weight
compared to the inputs, since the weights drop exponentially in the Circuit Computing gadget. We
would like the inputs of circuit B to change according to the outputs of circuit A and not the other
way around. Another example involves the Equality Gadget, which influences the Control ` of the
Circuit Computing gadget. The vertices of the Gadget have weights of the order of 210N , while
the control vertices of the Circuit Computing gadget are of the order of 2100N . We would like the
output of the gadget to bias the Control ` vertices, while also remaining independent from them.

Let’s get back to the original problem. A naive solution would be to connect vertex A directly
with vertex B. However, this would result in vertex B biasing vertex A due to the larger weight
it possesses. For example, if we connected ControlA with the control variables of circuit B, then
they would always bias ControlA with a very large weight, rendering the entire Equality gadget
useless. We would like to ensure that vertex A biases B with a relatively small weight, while also
experiencing a small bias from it.

The solution we propose is a Leveraging gadget that is connected between vertices A and B.
It’s construction will depend on the weights A and B, as well as the bias that we would like B to
experience from A. Before describing the construction, we discuss it’s functionality on a high level.

As shown in Figure 7, we place the gadget between the vertices A and B. We use two parameters
x, ε in the construction. We first want to ensure that vertex A experiences a small bias from the
gadget. This is why we put vertices L1,1, L1,2 at the start with weight B/2x+1 + ε, which puts a
relatively small bias. We want these vertices to be dominated by A. This is why vertices L1,3, L1,4

have combined weight less than A. However, these vertices cannot directly influence B, since it’s
weight dominates the weights of L1,1, L1.2. For this reason, we repeat this construction x+1 times,
until vertices Lx,1, Lx,2, whose combined weight is slightly larger than B. This means that vertices
Lx,3, Lx,4 are not dominated by B and can therefore be connected directly with it. The details of
the proof are given below.

Lemma 10. If the input vertex A of a leverage gadget with output vertex B, parameters x, ε, has
value 1, then the output vertex experiences bias wA/2

x + 2ε towards 0, while the input vertex A
experiences bias wB/2

x− 2ε towards 1. If A has value 0, then B experiences the same bias towards
1, while A is biased towards 0.

Proof. We first consider the vertices L1,1, L1,2. They both experience bias wA towards the opposite
value of A, which is greater than the remaining weight of their neighbors 2wA− 2ε, and hence they
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Figure 8: Leveraging Gadget notation

are both dominated to take the opposite value of A. Similarly, the vertices L1,3, L1,4 are now biased
to take the opposite values of L2,1, L2,2 with bias at least wB/2

x + 2ε, which is greater than the
remaining neighbors of wB/2

x + ε. Hence, both L1,3, L1,4 have the same value as A in any local
optimum. In a similar way, we can prove that, in any local optimum Li,3 = Li,4 = A, and therefore
B experiences bias wA/2

x + 2ε towards the opposite value of A, while A experiences bias at most
wB/2

x − 2ε from this gadget.

Note that the above lemma works for any value of ε. This means that we can make the bias
that B experiences arbitrarily close to wB/2

x. For all cases where such a Leverage gadget is used,
it is implied that ε = 2−1000N which is smaller than all other weights in the construction. Hence,
we only explicitly specify the x parameter and, for simplicity, such a Leverage gadget is denoted as
below schematically.

C.3 The Circuit Computing Gadget

Each of the two computing circuits is meant to both calculate the value of the underlying Circuit-
Flip instance, as well as the best neighboring solution. For technical reasons one of the two circuits
will need to output the complement of the value instead of the value itself, so that comparison can
be achieved later with a single vertex.

In this section we present the gadgets that implement the above circuits in a Node-Max-Cut
instance. The construction below is similar to the constructions of Schäffer and Yannakakis used
to prove Max-Cut PLS-complete [33]. Since NOR is functionally complete we can implement any
circuit with a combination of NOR gates. In particular, each NOR gate is composed of the gadgets
below. Each such gadget is parameterized by a variable n, and a NOR gadget with parameter n
is denoted NOR(n). Since we wish for earlier gates to dominate later gates we order the gates in
reverse topological order, so as to never have a higher numbered gate depend on a lower numbered
gate. The ith gate in this ordering corresponds to a gadget NOR(2N+i). Note that the first gates
of the circuit have high indices, while the final gates have the least indices.

We take care to number the gates so that the gates that each output the final bit of the value
of the circuit are numbered with the n lowest indexes, i.e. the gate of the kth bit of the value
corresponds to a gate NOR(2N+k). This is necessary so that their output vertices can be used for
comparing the binary values of the outputs.

The input vertices of these gadgets are either an input vertex to the whole circuit or they are the
output vertex of another NOR gate, in which case they have the weight prescribed by the previous
NOR gate. The input vertices of the entire circuit (which are not the output vertices of any NOR
gate) are given weight 25N .

Moreover, we have y1
i ,z

1
i vertices which are meant to bias the internal vertices of each gadget

and determine its functionality. Specifically, a1
i , a

2
i , c

1
i , c

2
i , vi, b

3
i are biased to have the same value

as y1
i , while b1i , b

2
i , d

1
i , d

2
i , c

3
i are biased to have the same value as z1

i . This is achieved by auxiliary
vertices of weight 2−200N , shown in Figure 10.
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Figure 9: The Node-Max-Cut instance implementing a NOR(n) gadget.

We also have auxiliary vertices ρ of weight 2−500N that bias the output vertex gi to the correct
NOR output value. Note that these vertices have the lowest weight in the entire construction.

These control vertices, y1, z1, y2, z2 are meant to decide the functionality of the gadget. We
say that the y, z vertices have their natural value when y = 1 and z = 0. We say they have their
unnatural value when y = 0 or z = 0. In general, when these vertices all have their natural values
the NOR gadget is calculating correctly and when they have their unnatural values the circuit’s
inputs are indifferent to the gadget.

Unlike Schäffer and Yannakakis [33], we add two extra control variable vertices y3, z3 to each
such NOR gadget, both of weight n − 50. The reason is to ascertain that in case of incorrect
calculation at least one y variable will have its unnatural value. Otherwise, it would be possible,
for example, to have an incorrect calculation with only z2 being in an unnatural state.

These NOR gadgets are not used in isolation, but instead compose a larger computing circuit.
As Schäffer and Yannakakis do ([33]), we connect each of the control variables zi, yi of the above
construction so as to propagate their natural or unnatural values depending on the situation. The
connection of these gadgets is done according to the ordering we established earlier. Recall that the
last m gates correspond to gadgets calculating the value bits, the n gates before them correspond
to the output gates of the next neighbor, and the rest are internal gates of the circuit.

These gadgets’ function is twofold. Firstly, they detect a potential error in a NOR calculation
and propagate it to further gates, if the control variables have their unnatural values. Second,if the
control variables have their unnatural values, they insulate the inputs so that they are indifferent
to the gadget and can be changed by any external slight bias.

Furthermore, all the vertices of these gadgets are all multiplied by a 2100N weight, except the
vertices of the NOR gadget corresponding to the final bits of the value which are multiplied by
290N . This is so that a possible error in the calculation of the next best neighbor supersedes any
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Figure 10: Local bias to internal vertices from y1
i , z

1
i

Figure 11: Extremely small bias to NOR output value.

possible result of the comparison. The auxiliary vertices introduced above, which are meant to
induce small biases to internal vertices, are not multiplied by anything.

Lastly, for technical simplicity, we have a single vertex for each computing circuit meant to
induce bias to all control variable vertices y, z at the same time. The topology of the connection is
presented below.

We now prove the properties of these gadgets.

Lemma 11. At any local optimum, if z1
i = 1 and y1

i = 0, then I1(gi), I2(gi) are indifferent with
respect to the gadget Gi.

Proof. Since z1
i = 1 and y1

i = 0, by the previous lemma, z2
i = 1 and y2

i = 0 Since y1
i = 0,

a1
i , a

2
i , c

1
i , c

2
i , v, b

3
i have an ε = 2−200N bias towards 0. Since z1

i = 1, d, c3i , b
1
i , b

2
i have an ε = 2−200N

bias towards 1. Assume gi = 0. Then b1i has bias at least 2100N · (2 · 2i + 10) + 2−200N towards
1 which dominates his best response. Hence, b1i = 1 in this case. Now a1

i has bias at least
w(I1) + 2100N · 2i + 2−200N towards 0 which also dominates. Therefore, a1

i = 0. Similarly, a2
i = 0.

Moreover, c3
i has y2

i and g as neighbors which are both 0 so it can take its preferred value of c3
i = 1.

Assume both d1
i , d

2
i are 0. Then v = 1 and b3i = 1 and hence at least one of d1

i , d
2
i would have

incentive to change to 1. If d1
i = 0, d2

i = 1 then v = 0 due to its 2−200N bias. Also, b3i = 0 because
d1
i = 0, d2

i = 1, g = 0, c3
i = 1 balance each other out b3i = 0 due to its 2−200N bias. Since d1

i

experiences at least 2100N ·2 · 2i + 10 +w(I1
i ) + 2−200N bias towards 1 it can only be d1

i = 1 in local
optimum. Hence, if g = 0 =⇒ d1

i = d2
i = 1, a1

i = a2
i = 0. Assume gi = 1. Then c1

i experiences bias
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Figure 12: Connecting the control vertices of the NOR gadgets. Recall that M is the number of
total gates in the circuit, n is the number of solution bits and m is the number of value bits. Note
that the gates are ordered in reverse, i.e the first gates have highest index.

Figure 13: We use a single vertex Control to bias all control vertices y, z. Note that this vertex is
connected with the y, z vertices through leverage gadgets

towards 0 from gi and z2
i which together with the 2−200N bias from y1

i means that his dominant
strategy is to take the value 0. Now b1i experiences bias from c1

i = 0 towards 1 as well as bias
2100N · 2i + 10 towards 1. Along with the 2−200N bias from z1

i we have that b1i = 1 in any local
optimum. Similarly, b2i = 1 by symmetry. Hence, in this case as well a1

i is 0 in any local optimum.
Similarly, we get that a2

i = 0 in any local optimum.
Assume both d1

i = d2
i = 0 then, as above, we have that b3i = 1 and hence at least one of the

d would gain the edge of weight 2−200N by taking the value 1. Hence, at least one d is equal to 1
and b3i = 0 since it is indifferent with respect to g, c3

i . Since v is now indifferent with respect to
d1
i = 0, d2

i = 1 it takes its preferred value v = 0. Since b3i = v = 0 we have that both d1
i , d

2
i must

take their preferred values d1
i = d2

i = 1 in any local optimum.
In both cases both a1

i = a2
i = 0, d1

i = d2
i = 1 and hence I1(gi), I2(gi) are indifferent with respect

to the gadget.

Lemma 12. If gate Gi is incorrect, then z2
i = 1. If y2

i = 0 then z2
i = 1. If z2

i = 1, then for all
j < i z1

j = z2
j = z3

j = 1 and y1
j = y2

j = y3
j = 0.

Proof. There are two possibilities if Gi is incorrect. Either one of the inputs I1(gi), I2(gi) is 1 and
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gi = 1 or both I1(gi) = I2(gi) = 0 and gi = 0.
In the first case, without loss of generality we have that I1(gi) = 1. This means that vertex a1

i

is biased towards value 0 with weight at least 2 · 2i+1 · 2100N by I1(gi) and constant vertex 1. This
bias is greater than the weight of all the other neighbors of a1

i combined. Hence, in local optimum,
a1
i = 0. Hence, vertex b1i is biased towards value 1 with weight at least 2 · |a1

i |, which is greater
than the total weight of all the other neighbors of b1i combined. Hence, b1i = 1. Similarly, we can
argue that a2

i = 0 and b2i = 1 if I2(gi) = 1.
Since b1i = 1 and gi = 1, vertex ci is biased towards 0 with weight at least 2 · 2i · 2100N , which

is greater than the total weight of all the other neighbors of c1
i combined. Hence, c1

i = 0. We now
focus on vertex z2

i . Its neighbors are two vertices of weight 2i ·2100N with constant value 0, vertices
c1
i , c

2
i , y3

i and a constant vertex 1 with weights 2100N · (2i − 50) and some auxiliary vertices of
negligible weight. If c1

i = 0, then z2
i is biased towards 1 with weight at least 3 · 2i · 2100N , which

is greater than the weight of the remaining neighbors combined. Hence, in local optimum, z2
i = 1.

Hence, the claim has been proved in this case. If I2(gi) = 1, the proof is analogous.
Now suppose I1(gi) = I2(gi) = 0 and gi = 0. Since I1(gi) = 0, vertex d1

i is biased towards 1 with
weight at least 2 · 2i+1 · 2100N , which is greater that the weight of all its other neighbors combined.
Hence, d1

i = 1. Similarly, we can prove that d2
i = 1. This means that vertex b3i is biased towards

0 with weight at least 2 · (2i + 10) · 2100N , which is greater than the weight of its other vertices
combined. This implies that b3i = 0. By the same reasoning, vi = 0. Since b3i = gi = 0, vertex c3

i

is biased towards 1 with weight at least 2 · 2i · 2100N , which is greater than the weight of its other
vertices combined. Hence, c3

i = 1. Now we focus on vertex y2
i . Its neighbors are a vertex of weight

2i · 2100N with constant value 1, vertex c3
i with weight 2i · 2100N , z1

i ,a constant vertex 1 both with
weight 2100N · (2i20) ,z2

i and a constant 0 with weight 2100N · 2i − 10 and some auxiliary vertices of
negligible weight. Hence, y2

i is biased towards 0 with weight at least 2 · 2i · 2100N , which is greater
than the weight of the remaining neighbors combined. Hence, y2

i = 0.
We are now going to prove that if y2

i = 0, then z2
i = 1, which concludes the proof for this case

and is also the second claim of the lemma. We first notice that z2
i is never biased towards 0 by the

vertices of the NOR gadget. Hence, if the bias of the remaining vertices is towards 1, then z2
i = 1

in local optimum. We notice that vertices y2
i and constant vertex 0 bias our vertex with weight

2 · (2i − 10) · 2100N , which is greater that any potential bias by vertices y3
i and constant 1 in the

chain of total weight 2 · 2100N · (2i − 50). Hence, z2
i = 1.

It remains to prove the last claim of the Lemma. It suffices to show that when a zi in the chain
is 1, the next yi+1 will be 0 and the claim will follow inductively. By a similar argument to the one
used for the second claim, vertex yi+1 is not biased towards 1 by any vertex in the NOR gadget.
However, it experiences bias towards 0 from vertex zi and constant vertex 1, which is greater than
any other potential bias from its other neighbors. Hence, yi+1 = 0 and the claim follows.

Lemma 13. Suppose z1
i = 0 and y1

i = 1. If gi is correct then z2 and y2 are indifferent with respect
to the other vertices of the gate Gi. If gi is incorrect then gi is indifferent with respect to the other
vertices of the gate Gi, but gains the vertex ρ of weight 2−500N .

Proof. Assume gi is corrrect.
Assume at least one of I1(gi), I2(gi) is equal to 1, say I1(gi) = 1, hence at least one of d1

i , d
2
i ,

assume d1
i , is equal to 0. This is because otherwise it would experience bias from its neighbors

I1(gi),d
2
i towards 0 which, along with the bias from the auxiliary vertex between y1

i and d1
i , would

dominate it towards 0. Therefore, b3i experiences bias towards 1 from both gi, which is correct, and
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d1
i , which means, along with the bias from y1

i , its equal to 1. Hence, c3
i must be equal to 0, since

it is dominated by the bias from b3i , the constant vertex of 1 and its auxiliary bias from z1
i . Hence,

c3
i is 0 and y2

i is indifferent.
Assume I1(gi) = 0, I2(gi) = 0. Hence, d1

i = 1, d2
i = 1, which means that b3i = 0. Since g is

correct, it must be g = 1, and therefore c3
i = 0, since it can take its preferred value of 0, towards

which it is biased by z1
i . Therefore, y2

i is indifferent to this gadget.
Moreover, since gi = 0 it must be that c1

i = c2
i = 1 since they both have gi and a constant

0 vertex as their neighbors, which along with the bias from yi, dominates their bias. Since z2
i

neighbors with two 1 vertices and two 0 vertices it is indifferent with respect to this gadget.
In all cases, when gi is correct, y2

i , z
2
i are indifferent.

Assume gi is incorrect.
Assume that at least one of I1(gi),I2(gi) is equal to 1. Similarly to above, d1

i = 0. Since, gi is
incorrect c3

i will be 0 due to the bias from gi, the constant vertex 1 and z1
i . Hence, b3i = 1. The

vertex gi is therefore indifferent with respect to this gadget.
Furthermore, since I1(gi) = 1, a1

i = 0 and b1i = 1. Since gi = 1 we have that c3
i = 0. Also, since

I2(gi) = 0, a2
i must take its preferred value of 1, and hence b2i takes its preferred value of 0. Similarly,

c2
i can also take its preferred value of 1. Overall, gi is connected to b1i = 1,c1

i = 0,b2i = 0,c2
i = 1 and

hence is indifferent
Assume both I1(gi) = I2(gi) = 0. Then d1

i = d2
i = 1, which means that b3i = 0, and since gi = 0,

we have that c3
i = 1. Hence, gi is indifferent with respect to this gadget.

Because I1(gi) = I2(gi) = 0, we have that a1
i = a2

i = 1 since they can take their preferred values.
Moreover, b1i = b2i = 0 since they are biased to 0 by z2

i . Given that gi = 0 it must be that both
c1
i = c2

i = 1. Therefore, gi indifferent in this case as well.
Since in all cases that gi is incorrect, it is indifferent with respect to this gadget, it will adhere

to the bias that the auxiliary gadget connecting a1
i , a

2
i , gi gives to gi. If both Ii is 1 then a1

i = 0 and
if Ii = 0 then a1

i = 1. In all cases, ai = ¬Ii. Hence, the auxiliary gadget gives bias to gi towards 0,
except when both I1(gi) = I2(gi) = 0 in which case it biases gi towards 1. This means that gi has
a 2−500N bias towards its NOR value.

Lemma 14. If Control = 1 then all y, z vertices have a 2−87N bias towards their natural values.
If Control = 0 then all y, z vertices have a 2−87N bias towards their unnatural values.

Proof. The NotControl vertices are dominated by Control’s bias of 27N and hence have the op-
posite value. By Lemma 10 we have that Control and NotControl experience at most 26N bias,
while the y, z vertices experience 2−87N bias towards the values opposite Control and NotControl,
which proves the claim.

Lemma 15. Assuming all vertices of the computing circuit gadget are in local optimum and have
no external biases. If Control = 1 then ∀i,z1

i = 0, y1
i = 1, z2

i = 0, y2
i = 1, z3

i = 0, y3
i = 1. If

Control = 0 then ∀iz1
i = 1, y1

i = 0, z2
i = 1, y2

i = 0, z3
i = 1, y3

i = 0.

Proof. If Control = 1, consider the highest k such that yk or zk have their unnatural values, i.e.
yk = 0 or zk = 1. Since Control = 1 all y, z vertices experience a bias towards their unnatural biases
by Lemma 14. Since the bias that biases them towards their unnatural values is greater than the
weight of the internal vertices connected to y1, z1, y3, z3 it must be that one of the vertices y2, z2

have unnatural values. However, by Lemma 12 all control vertices for j < k are also unnatural.
Assume that the output vertices of Gi are only internal to the circuit, i.e. no vertex except those

39



belonging to the computing gadget is connected to them. Since by Lemma 11, unnatural values
for y1

i , z
1
i imply that the input vertices of gates Gi are indifferent to Gi, the vertex gi would be

dominated by the bias from the auxiliary vertex ρ. If gk is an output vertex by the assumption has
no external bias. Hence, in this case, gk can take the correct value, which is a contradiction since
gk having the correct value would mean y2

k, z
2
k can take their natural bias by Lemma 13.

If Control = 0, consider the least k such that the y, k control vertices have their natural values.
Since the y1

i , z
1
i , y

3
i , z

3
i vertices are dominated by the 2−87N bias ensured by Lemma 14 we have that

the only vertices with natural values can be y2
i , z

2
i . However, even these vertices can only be biased

towards their unnatural values since, by lemmas 12 and 13, even if the gate is correct y2
i , z

2
i are

indifferent with respect to the NOR gadget.

Having proved the above auxiliary lemmas, we can finally prove the theorem specifying the
behaviour of our computing circuits.

Theorem 7. At any local optimum of the Node-Max-Cut of Figure 3.

1. If Control` = 1 and the vertices of Next`,V al` experience 0 bias from any other gadget beyond
C` then:

• Next` = Real-Next(I`)

• Val` = Real-Val(I`)

2. If Control` = 0 then each vertex in I` experiences 0 bias from the internal vertices of C`.

3. Control` experiences wControl` bias from the internal vertices of C`.

Proof.

1. Since Control` = 1 and since we assumed no vertex experiences any external bias, by lemma
15 we have that all y, z have their natural values and hence all gates compute correctly, by
lemma 12. Therefore, Next` = Real −Next(I`) and V al` = Real − V al(I`).

2. Since Control` = 0, by lemma 15 all y, z have their unnatural values. Since all NOR gadgets
have unnatural control vertices we have that their inputs are indifferent with respect to the
gadgets. Hence, the claim that they are unbiased follows.

3. The Control` vertex is connected to a vertex NotControl`, of weight WNotControl` = 27N , as
well as to several leverage gadgets, which contribute bias at most 2100N−94N = 26N . Hence,
the 27N bias dominates.

C.4 The Equality Gadget

The Equality Gadgets are used to check whether the next best neighbor of a circuit has been
successfully transferred to the input of the other circuit. The output of the Equality gadget is
connected to the control variables of the circuit that should receive the new input. If the new input
has not been transferred, the output of this gadget biases the Control vertex towards 0, which
biases the internal control vertices towards unnatural values. This enables the inputs of the circuit
to change successfully to the next solution. When the new solution is transferred, the output of
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Figure 14: This gadget performs equality check for the bits Ii,B and Ti,A. If they are equal, Ri,A = 0
at local optimum. We have n such gadgets for each of the two circuits. The n gadgets are connected
to produce the final output, which is ControlB.

the gadget changes, in order to bias the control vertices towards their natural values, so that the
computation can take place.

Since we have two possible directions, both from Circuit A to Circuit B and vice versa we need
two copies of the gadgets described in this section.

We will now describe the function of the Equality Gadget when Circuit A gives feedback to
Circuit B. The Equality Gadget takes as inputs the TA vertices from the CopyA Gadgets and IB
and simply checks whether they are equal. Due to Lemma 4, at local optimum, the TA vertices
have the same value as NextA which we want to transfer. One might try to connect NextA as input
to the Equality gadget. The reason we avoid this construction is that we do not want the output
vertices of the Circuit Computing gadget CA to experience any bias from this gadget, because the
computation changes their value with very small bias. For this reason, we connect TA vertices to
the input that are dominated by ηA vertices. The input vertices IB are dominated by either the
vertices in the NOR gadgets or ηA, hence we can connect them directly as inputs to the gadget.

For each bit of the next best neighbor, we construct a gadget as in Figure 14, which performs
the equality check for the i-th bit of the next best neighbor. The idea for this construction is very
simple: the weights decrease as we come closer to the output, so that the input values dominate
the final result. If the inputs are equal, the final value will be 0. Notice that we have put and
intermediate vertex between IB and the gadget to ensure that the two input vertices will have equal
weight. A detailed analysis is provided in the proof of Lemma 3.

Now that we have gadgets to perform bit wise equality checks, we need to connect them all to
produce the output of the Equality gadget. This is done by the construction of Figure 14 Essentially,
the idea is that if all the bits are equal, all the comparison results will be 0 and will dominate the
ControlB to take 1. If at least one result is 1, then together with the constant vertex 1 will bias
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ControlB to take value 0.
We now prove the main lemma concerning the Equality Gadget, which states that at local

optimum, the output of the Equality will be 1 if and only if the two inputs to the gadget are equal.

Lemma 3. Let a local optimum of the Node-Max-Cut instance in Figure 3. Then,

• ControlA = (IA = TB)

• ControlB = (IB = TA)

Proof. For simplicity we only prove the second claim, since the first follows by similar arguments.
We first focus on on the behavior of a single Equality gadget. We would like to prove that Ri,A = 0
if and only if Ii,B = Ti,A.

We first observe that vertex e1
i,A is biased with weight 2105N by Ii,B, which is greater that the

bias from its other neighbor e2
i,A. Hence, at local optimum it is always the case that e1

i,A = ¬Ii,B.

Moreover, vertices e2
i,A and e3

i,A essentially function as the complements of e1
i,A and Ti,A. This is

because they are biased with weight 230N by them, which is greater than the bias by vertex e5
i,A.

Hence, e2
i,A = ¬e1

i,A and e3
i,A = ¬Ti,A.

We first examine the case where IB = TA. Then e1
i,A = ¬Ti,A. Since these vertices have equal

weights, vertex e4
i,A experiences 0 total bias from them and is biased by constant vertex 0 with

weight 220N and by R2 with weight 29N . Therefore, e4
i,A = 1. By the previous observations we have

that e2
i,A and e3

i,A have opposite values, which means that e5
i,A has bias 0 from these two vertices.

Is also has bias 220N by constant 0 and 29N from Ri,A. Hence, e5
i,A = 1. Vertices e4

i,A and e5.i

bias vertex Ri,A towards 0 with weight 2 · 220N , which is greater than the bias from constant 0 and
ControlB. As a result, we have that Ri,A = 0 and the argument is complete in this case.

Now we examine the case where Ii,B 6= Ti,A. Assume that Ii,B = 1, the other case follows
similarly. Then, e1

i,A = 0, Ti,A = 0, e2
i,A = 1, e3

i,A = 1. This means that e5
i,A is biased with weight

at least 2 · 230N towards 1, which is greater than the combined weight of Ri,A and constant 0.
Therefore, e5

i,A = 0. Now we observe that Ri,A is biased with weight at least 2 · 220N towards 1

by vertices e5
i,A and constant 0, which is greater that the combined weight of e4

i,A and ControlB.

Hence, Ri,A = 1 in this case. If Ii,B = 0, then we could prove similarly that e4
i,A = 0, which implies

that Ri,A = 1 by the same argument.
We will now prove that ControlB takes the appropriate value. First of all, we observe that

ControlB is connected with NotControlB, (part of the Circuit Computing gadget) which has weight
27N and with Ri,A vertices which have weight 29N . It is also biased with weight slightly more than
26N by each of the control variables yi due to the leverage gadget. This means that for N large
enough ControlB is dominated by the behavior of the Ri,A vertices. Suppose that Ii,B = Ti,A for
all i, 1 ≤ i ≤ n. By the preceding calculations, we have that Ri,A = 0 for all i. Hence, ControlB
experiences total bias n·29N towards 1, which is greater than the weight of constant vertex 1. Thus,
ControlB = 1 in this case. Now suppose that there exists a j, 1 ≤ j ≤ n, such that I2,j = ¬Tj,A.
By the preceding calculations, Rj,A = 1. Hence, vertex ControlB is biased by vertices Rj,A and
constant 1 towards 0 with weight at least (n− 1) · 29N + 29N = n · 29N , which is greater than the
combined weight of all the other Ri,A’s. Therefore, ControlB = 0 in this case and the proof is
complete.
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C.5 The Copy Gadget

The Copy Gadgets transfer the values of the next best Neighbor of a circuit to the input of the
other circuit. This is fundamental for the correct computation of the local optimum. There are
some technical conditions that these gadgets should satisfy, which we discuss in the following.

The purpose of the Copy Gadgets is twofold. Firstly, when the Flag vertex has value 1, they
are meant to give the inputs of Circuit B a slight bias to take the values of the best flip neighbor
that Circuit A offers, that is NextA. Secondly, in this case they are meant to give zero bias to the
output vertices of Circuit A that calculate the best flip neighbors. This is because when vertex
Flag is 1, the input of circuit A is going to change, which means that the NOR gates of this circuit
will compute the new values. A consequence of the functionality of the NOR gadgets is that the
outputs of a gadget are only biased towards the correct value with a very small weight. This is
because the gadget is constructed in a way that allows these vertices to be indifferent to all of
their neighbors when the time comes to change their value. As a result, if we connect the output
vertices with other gadgets, we have to ensure that they will experience zero bias from them in
order for the computation to take place properly. Since the outputs of Circuit A that produce the
next best neighbor are connected to the Copy Gadgets, we should ensure that they will experience
zero bias when vertex Flag is 1, so that they can change properly. A similar functionality should
be implemented when vertex Flag is 0.

Next, we present the gadgets that implement the above functionality. There are two Copy
gadgets with similar topology, CopyA and CopyB. For simplicity, we only describe the details of
CopyA. The gadget takes as input the value of vertex Flag, which determines whether a value
should be copied or whether the outputs of Circuit A should experience zero bias. It also takes as
input NextA, which is the next best neighbor calculated by Circuit A. The output of the gadget is
a bias to vertices IB and TA towards adopting the value of NextA.

At this point, one might wonder why we didn’t just connect the output of the CopyA gadget
to the input IB. This is because the value of IB also depends on the control variables. If the
control variables of the input gates have natural values, then the inputs experience great bias from
the gate, making it impossible for their values to change by the Copy Gadget. Hence, the Copy
Gadget gives a slight bias to vertex TA, which is an input to an auxiliary circuit that compares
it with IB (i.e the Equality gadget) . If they are not equal, this means that the output has not
been transferred yet. In this case, the output of the gadget is given a suitable value to bias the
control vertices towards unnatural values. When this happens, the inputs IB can change to the
appropriate values.

Note that we have one of the above gadgets for each of the bits of the next best neighbor
solution that the Circuit Computing gadgets output.

We have a gadget of Figure 15 for each of the m bits of the next best neighbor. Vertex Fi,A has
a very large weight in order to dominate the behavior of ηi,A. However, we do not want this vertex
to influence the behavior of Flag. For this reason, we connect Flag with Fi,A using a Leveraging
gadget. Notice that the behavior of Fi,A is dominated by Flag by weight at least 250N . Another
important point is that we connect the output of the CopyA gadget with the input of Circuit B
using another Leveraging gadget. This is due to the fact that the weight of the input vertices is
of the order of 2105N , which is far more than the weight of ηi,A. Hence, we do not want the input
vertices to influence the value of ηi,A, while also ensuring that the Copy gadget gives a slight bias
to the inputs IB towards the value of NextA.

We now prove Lemma 4, which makes precise the already stated claims about the function of
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Figure 15: The gadgets that copy the values from one circuit to the other

the Copy Gadgets.

Lemma 4. At any local optimum point of the Node-Max-Cut instance of Figure 3:

• If Flag = 1, i.e. NextB writes on IA, then

1. TB = NextB

2. If ControlA = 0 then IA = TB = NextB

• If Flag = 0 i.e. NextA writes on IB, then

1. TA = NextA

2. If ControlB = 0 then IB = TA = NextA

Proof. We prove the claim for Flag = 1. The case Flag = 0 is identical.
We begin with the first claim. Due to the leveraging gadget, vertex Fi,B experiences bias from

Flag which is slightly less than 250N . Hence, it is biased towards 0 with weight at least 249N . This
is greater than the weight of ηi,B, which is the other neighbor of Fi,B. Hence, Fi,B = 0 at local
optimum. Now vertex ηi,B experiences zero total bias from vertices Fi,B and constant 1 and biases
2100N by NextB i, 230N by Ti,B and slightly more that 275N by the input Ii,A due to leveraging, which
means that its value at local optimum will be determined by NextB i. Specifically, ηi,B = ¬NextB i

at local optimum. Now, vertex Ti,B experiences bias 240N from ηi,B and biases of the order of 27N

from the gates of the controller gadget. Hence, Ti,B has bias towards NextB i equal to wηi,B and
will take this value at local optimum.

To prove the second claim, we use the already proven fact that ηi,B = ¬NextB i when Flag = 1.
Due to the Leverage gadget, vertex I i experiences bias slightly less than 210N from vertex ηi,B.
Since ControlA = 0, by Lemma 7, we have that Ii,A is indifferent with respect to the gadget CA,
and will therefore take the value of ¬ηi,B = NextB i = Ti,B

Lemma 5. At any local optimum of the Node-Max-Cut instance of Figure 3:
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• If Flag = 1, then any vertex in NextA experience 0 bias with respect to the CopyA gadget.

• If Flag = 0 then then any vertex in NextB experience 0 bias wrt. the CopyB gadget.

Proof. We notice that due to leveraging, vertex Fi,A of gadget CopyA experiences bias slightly less
than 250N from vertex Flag = 1. This dominates its behavior, since the other neighbor ηi,A has
weight that is orders of magnitude smaller. Hence, Fi,A = 0. Now, vertex ηi,A experiences total bias
2 ∗ 2110N from vertices Fi,A and constant 0, 2100N from NextAi, 230N from Ti,A and slightly more
than 275N from Ii,B due to the Leverage gadget used. This means that ηi,A = 1. Now we are ready
to prove our claim. Vertex NextAi is connected to vertices ηi,A and constant 0 of gadget CopyAi.
They have the same weight and opposite values at local optimum. This means that NextAi has 0
bias with respect to CopyAi, i.e it is indifferent.

The case for Flag = 0 follows symmetrically.

C.6 The Comparator Gadget

The purpose of the Comparator gadget is to implement the binary comparison between the bits of
the values of the two circuits. At the same time we need to ensure that the vertices of the losing
circuit (i.e the circuit with the lower value) are indifferent with respect to the Comparator gadget,
so that Lemma 7 can be applied.

In particular, the output vertices that correspond to the bits of the value, presented in section
C.3, with weights 290N · 2N+i are each connected as below.

Note that the output bits of the second circuit B are the complement of their true values, in
order to achieve comparison with a single bit. The weight of the Flag vertex is 280N

To see why the value of vertex Flag implements binary comparison one needs to consider four
cases: In the first two, where the ith bits are both equal, the total bias Flag experiences is zero,
since it experiences bias towards a certain bit as well as the complement of said bit. In the other
two, where one bit is 1 and the other is 0, the Flag vertex will experience 2i bias towards either
value, which will supersede all lower bits.

However, the Comparator gadget is meant not only to implement comparison between values,
but also to detect whether a circuit is computing wrongly and, hence, to fix it. To this end we
connect the following control vertices to the vertex Flag : the control vertices y3

m+1,A for circuit A

and z3
m+1,B for circuit B, where m+ 1 is the last NOR gadget before the bits of the values (recall

that we have m value bits and that wy3i,A
= wz3i,B

= 2100N · (2N+m+1 − 50)) (see Figure 12), as well

as the control vertices y3
i,A, z

3
i,B,∀i ≤ m for each NOR gadget that corresponds to an output bit of

the value (which have weight wy3i,A
= wz3i,B

= 290N · (2N+i − 50)). The vertices y3
m+1,A and z3

m+1,B

are used to check whether the next best neighbor has been correctly computed. If it isn’t, these
vertices dominate Flag, due to their large weight of 2100N compared to the weight of the value bits,
which is of the order of 290N . The control vertices of the output bits of the value are used in a more
intricate way to ensure that even if one to the results is not correct, the output of the comparison
is the desired one. Details are provided in Lemma 16. All these vertices are connected in such a
way that a control vertex with unnatural value, biases Flag towards fixing that circuit.

We prove the following properties:

Lemma 6. Let a local optimum of the instance of Node-Max-Cut of Figure 3:

• If Flag = 1 then all vertices of CA experience 0 bias wrt. the Comparator gadget.
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Figure 16: vertices of the Comparator gadget. Note that Circuit B is meant to output the comple-
ment of its true output.

• If Flag = 0 then all vertices of CB experience 0 bias wrt. the Comparator gadget.

Proof. Suppose Flag = 1. Then the only vertices of CA connected to the Comparator gadget are
the value output bits and certain control vertices, in such a way that they are connected to either
Flag or a constant vertex 0 of weight equal to Flag. In all cases, both biases cancel each other
out and the vertices of Circuit A are indifferent. Suppose Flag = 0. Then the only vertices of
CB connected to Flag are also connected with a constant 1 vertex. Similarly to the first case, all
vertices of circuit B are indifferent with respect to the Comparator gadget when Flag = 0.

We now prove the most important lemma of the Comparator gadget. Our goal is to compare
the output values of the two circuits, so that we change the input of the circuit with the smaller real
value. The main difficulty lies in that one or both of the circuits might produce incorrect bits in
their output. A simple idea would be to try to detect any incorrect output bits and influence Flag
accordingly, as we do with control variables y3

m+1,A and z3
m+1,B. However, if the least significant bit

of a circuit is incorrect, the weight of the corresponding control vertex is exponentially smaller that
the rest of the bits. Hence, it cannot dominate the outcome of the comparison. This means that

46



Figure 17: Connection between the control vertices and the Flag vertex.

sometimes we might be at a local optimum where some output vertices are incorrect. To alleviate
this problem we propose this construction.

The idea behind this lemma is very simple: if it is guaranteed that the output of one of the
circuits is correct and we know which bits of the other circuit might be wrong, we can still compare
their true values. This is accomplished by an extension of the traditional comparison method, by
also taking into account the control variables of the output bits and examining all the possible
cases. This lemma is very useful in our proof, since by Lemma 7 we know that at least one of the
circuits computes correctly in local optimum.

Lemma 16. At any local optimum:
Suppose that Flag = 1. If ∀i, z1

i,A = 0, y1
i,A = 1, z2

i,A = 0, y2
i,A = 1, z3

i,A = 0, y3
i,A = 1 and

∀i > m, z1
i,B = 0, y1

i,B = 1, z2
i,B = 0, y2

i,B = 1, z3
i,B = 0, y3

i,B = 1 then

Real-V al(IA) ≤ Real-V al(IB)

Suppose that Flag = 0. If ∀i, z1
i,B = 0, y1

i,B = 1, z2
i,B = 0, y2

i,B = 1, z3
i,B = 0, y3

i,B = 1 and

∀i > m, z1
i,A = 0, y1

i,A = 1, z2
i,A = 0, y2

i,A = 1, z3
i,A = 0, y3

i,A = 1 then

Real-V al(IB) ≤ Real-V al(IA)

Proof. Since for all gates that do not correspond to value bits (see Figure 12), we have that they
possess natural values, and hence Flag is indifferent with respect to them, we only need to examine
the final m gates that correspond to the value bits.
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We denote the kth bit of ValA,ValB as Ak, Bk. Bk corresponds to the actual value of the
kth bit of the circuit B instead of its complement for simplicity. The actual value of the vertex
corresponding to Bk is the opposite. We also denote z2

k,B the control vertex corresponding to the
bit Bk. We make the distinction between Ak, Bk and Real(Ak), Real(Bk). These may be equal or
different depending on whether the circuit calculated the kth bit correctly. By the assumption we
know that Ak = Real(Ak) since A calculates correctly. We do not know whether Bk = Real(Bk),
but we do know that Bk 6= Real(Bk) =⇒ z2

k,B = 1.
We consider three cases.
In the case that (Ak, Bk, z

2
k,B) ∈ (0, 0, 0), (1, 1, 0), (0, 1, 1), Flag experiences bias at most 2 ·

290N · (50) from this bit towards Flag = 1 in any of these cases. In this case, we have that either
Real(Ak) = Real(Bk) or Real(Ak) < Real(Bk), depending on whether Bk calculated correctly.
Either way, Real(Ak) ≤ Real(Bk).

In the case that (Ak, Bk, z
2
k,B) ∈ (0, 1, 0), Flag experiences bias 2 · 290N · (2N+k) from this bit

towards Flag = 1. In this case, we have that Real(Ak) < Real(Bk), since both calculate correctly.
In the case that (Ak, Bk, z

2
k,B) ∈ (0, 0, 1), (1, 0, 0), (1, 1, 1), (1, 0, 1) then Flag experiences bias at

least 2 · 290N · (2N+k − 50) towards Flag = 0 from this bit in any of these cases. In these cases,
Real(Ak) might be higher, but we will show that these cases can never matter.

Suppose k the highest i for which (Ai, Bi, z
2
k,B) /∈ (0, 0, 0), (1, 1, 0), (0, 1, 1).

If no such k exists then all bits must lie in the first case and hence ∀kReal(Ak) ≤ Real(Bk).
Hence, Real-V al(IA) ≤ Real-V al(IB).

If for that k, (Ak, Bk, z
2
k,B) ∈ (0, 1, 0), we know that Real(Ak) < Real(Bk) while for all higher

bits kReal(Ak) ≤ Real(Bk). This means that Real-V al(IA) < Real-V al(IB), since the lower bits
don’t matter as long as we have a strict inequality in a high bit.

Lastly, if we have that (Ak, Bk, z
2
k,B) ∈ (0, 0, 1), (1, 0, 0), (1, 1, 1), (1, 0, 1), we have that Flag

experiences bias at least 2 · 290N · (2N+k − 50) towards Flag = 0 from this bit. Furthermore, it
experiences bias at most 2·290N ·(50) towards Flag = 1 from each bit higher that k. Each bit i lower
than k causes bias at most 2 · 290N · (2N+i) each towards Flag = 1. In total, if we have m bits, we
have at most (m−k) ·2 ·290N ·(50)+

∑
i<k 2 ·290N ·(2N+i) ≤ (m) ·2 ·290N ·(50)+2 ·290N ·(2N+k−2N )

towards Flag = 1 and at least 2·290N ·(2N+k−50) towards Flag = 0. For N sufficiently high, the bias
towards 0 would win, making Flag no longer have 1 as its best response, which is a contradiction.
Hence, the third case can not happen in a local optimum with Flag = 1.

The case for Flag = 0 is identical, with the only difference being we consider y2
k,A instead.

Lemma 8. At any local optimum of the Node-Max-Cut instance of Figure 3:

• If Flag = 1 then NextB = Real-Next(IB)

• If Flag = 0 then NextA = Real-Next(IA)

Proof. Assume a local optimum with Flag = 1 and NextB 6= Real-Next(IB). By Lemma 12 we
have that Circuit B is computing incorrectly and hence the control vertex z3

m+1,B (i.e. the last gate

before the value bits) has its unnatural value, which is z3
m+1,B = 1.

Assume that, ControlA = 0. Then by Lemma 4 we have that IA = TB, which by Lemma 3 we
have ControlA = 1, a contradiction. Hence, ControlA = 1.

Therefore, since have that ControlA = 1 and thatNextA = Real-Next(IA), which by Lemma 15,
implies that the corresponding vertex y3

m+1,A has its natural value y3
m+1,A = 1.
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This means that Flag experiences bias towards 0 at least 2·2100N ·(2N+m+1−50) from the vertices
z3
m+1,B,y3

m+1,A, which dominates Flag to take value 0. This is a contradiction since we assumed
that Flag = 1 at local optimum. Hence, if Flag = 1 then it must be that NextB = Real-Next(IB).

Similarly, we can prove that if Flag = 0 then NextA = Real-Next(IA).

Lemma 9. At any local optimum of the Node-Max-Cut instance of Figure 3:

• If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB) then
Real-V al(IA) ≤ Real-V al(IB).

• If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA)
then Real-V al(IB) ≤ Real-V al(IA).

Proof. Assume that, ControlA = 0. Then by Lemma 4 we have that IA = TB, which by Lemma 3
we have ControlA = 1, a contradiction. Hence, ControlA = 1.

Since Flag = 1 and we have that ControlA = 1, by Lemma 15 all control vertices of CA have
their natural values. Furthermore, since by the proof of Lemma 8 we know that all control vertices
of weight 2100N have their natural values, we can apply Lemma 16. Therefore, Real-V al(IA) ≤
Real-V al(IB)

The proof for Flag = 0 is identical.
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