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Abstract—Ethereum Improvement Proposal (EIP) 1559
was recently implemented to transform Ethereum’s trans-
action fee market. EIP-1559 utilizes an algorithmic update
rule with a constant learning rate to estimate a base fee. The
base fee reflects prevailing network conditions and hence
provides a more reliable oracle for current gas prices.

Using on-chain data from the period after its launch, we
evaluate the impact of EIP-1559 on the user experience and
market performance. Our empirical findings suggest that
although EIP-1559 achieves its goals on average, short-term
behavior is marked by intense, chaotic oscillations in block
sizes (as predicted by our recent theoretical dynamical system
analysis [1]) and slow adjustments during periods of demand
bursts (e.g., NFT drops). Both phenomena lead to unwanted
inter-block variability in mining rewards. To address this
issue, we propose an alternative base fee adjustment rule
in which the learning rate varies according to an additive
increase, multiplicative decrease (AIMD) update scheme. Our
simulations show that the latter robustly outperforms the EIP-
1559 protocol under various demand scenarios. These results
provide evidence that variable learning rate mechanisms may
constitute a promising alternative to the default EIP-1559-
based format and contribute to the ongoing discussion on
the design of more efficient transaction fee markets.

I. INTRODUCTION

Transaction fees have been an integral part of the

emerging blockchain economies and the topic of heated

debates in the blockchain community [2]–[4]. Ethereum,

the second largest blockchain platform in terms of market

value (as of September 6th, 2021), recently launched

its long-awaited London hard fork which implements –

among other protocol upgrades – Ethereum Improvement

Proposal (EIP) 1559, which aims to radically transform its

transaction fee market [5], [6].

In Ethereum’s original fee market, users selected a gas
price that indicated how much they were willing to pay for

their transactions to be included on the blockchain. This

mechanism behaved like a (generalized) first-price auction

in which miners, the “auctioneers”, allocated the available

transaction slots in each block to the highest paying users

or “bidders”. Unfortunately, it also shared all of a first-

price auction’s drawbacks [7], [8]: untruthful bidding,

excessive intra- and inter-block variation of transaction

fees, and (over-)bidding competition for faster inclusion.

The EIP-1559 transaction market reform was put for-

ward to address these shortcomings. After a period of

consultation and implementation, EIP-1559 came into ef-

fect on August 5, 12:33:42 PM UTC, at block 12,965,000

[9], [10]. Its main goals are to allow for more flexibility

during changing market conditions by aiming for a long-

term average target block size (half-full blocks) instead of

blocks that are consistently full, and to make transaction

fees more predictable (but not necessarily lower).

To achieve these goals, EIP-1559 sets a base fee that

is algorithmically updated after each block to reflect the

prevailing market demand. Critical in these updates is a

hard-coded learning rate (currently set at 12.5%) which

calibrates the size of the adjustment according to the

current block size. Unlike the traditional formats in which

all fees were transferred from users to miners, the base

fee is now burnt [11], i.e., permanently removed from the

total supply of Ethereum tokens (ether or ETH). Alongside

newly minted tokens, miners are compensated for their

work by an additional tip set by the users, typically much

lower than the base fee.

Motivation and Contributions: Due to Ethereum’s

prominence in the blockchain ecosystem, EIP-1559 nat-

urally attracted widespread academic and community at-

tention even before its launch. In [4], [12], its economic

properties were studied, proving that it is incentive com-
patible in the sense that it is rational for users to follow a

simple bidding strategy whenever the current base fee is

comparable to market demand, i.e., does not under-price

the limited supply of gas in a block. Meanwhile, [1], [13]

analyzed its dynamics under different demand scenarios

and [3], [14] initiated the discussion about alternative

(EIP-1559-like) transaction fee market mechanisms.

In this paper, we contribute to this growing literature

on EIP-1559. We use blockchain data from the first month

after EIP-1559’s launch – the “honeymoon” period during

which legacy transactions are still accepted – to evalu-

ate EIP-1559’s impact on user experience and network

performance. We use this empirical data to simulate and

argue about the performance of EIP-1559 under different

learning rate configurations. Our contributions can be

summarized as follows.

• We find that the current learning rate leads to slow

adjustments during periods of demand peaks (e.g., NFT

[15] drops) and to intense oscillations in block sizes

during periods of stable demand.

• Both slow adjustments and oscillations have a negative

effect on the user experience and, more importantly, on

mining rewards. In particular, they can potentially gener-

ate strategic incentives for miners and hence undermine

the stability of the mechanism.

• We then use the empirical data to run simulations with

different learning rates. Our results confirm the intuition

that higher (lower) learning rates perform well (poorly)

during demand peaks and poorly (well) during periods
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of demand stability. On the positive side, all EIP-1559

variations achieve (in fact, slightly overshoot) the target

block size (50%) on average.

• Based on the above, we propose an alternative mech-

anism that utilizes an additive increase, multiplicative

decrease (AIMD) update scheme to implement a vari-

able learning rate. Our empirical results suggest that the

AIMD mechanism combines the best of both worlds: it

selects a low learning rate during periods of stable de-

mand and reacts quickly during demand peaks to reflect

increasing gas prices. The AIMD not only achieves the

target block size on average (half-full blocks) but also

considerably dampens the oscillations between almost

full and almost empty blocks, which leads to more stable

mining rewards and a more uniform user experience.

While our empirical results do not prove the optimal-

ity of the proposed AIMD mechanism under arbitrary

conditions, they provide evidence that variable learning

rates may considerably improve upon the current EIP-1559

format and may thus constitute a promising direction for

future work in the ongoing discussion about EIP-1559-

based transaction fee mechanisms [3], [14].

Outline: The rest of the paper is structured as fol-

lows. In Section II, we present the main elements of

Ethereum’s blockchain protocol and EIP-1559. In Sec-

tion III, we describe our dataset and in Section IV our

simulation environment. Section V contains the evaluation

of the simulation results. Section VI concludes the paper

with questions and directions for future work.

II. PRELIMINARIES

A. Ethereum

Ethereum has a prominent position in the growing

blockchain ecosystem, as the first platform to support

decentralized, self-executing pieces of software known as

smart contracts [16].

Block Creation: The creation and execution of smart

contracts on the Ethereum blockchain is achieved through

transactions which are ordered and grouped into blocks.

Whenever a new smart contract is deployed or a function

of an existing contract is called, the operation is embedded

in a transaction. The transaction is then broadcast to

consensus nodes – which in Ethereum’s current proof-of-
work mechanism are called miners – through a peer-to-

peer network [17]. The miners vie for the right to create

new blocks for which they earn block creation rewards
[18]. Eventually, a new block that includes a set of new,

previously pending transactions is created and broadcast

to the nodes of the peer-to-peer network, who then update

their view of the blockchain. Valid blocks that are not

propagated across the network quickly enough can be

superseded by a competing block – the losing blocks are

called uncles.

Transaction Fees: The maximum size of the blocks

that encapsulate these transactions is limited as per the

specifications of the protocol and is measured in terms

of the total amount of computational effort required for

executing all transactions in that block. It is chosen as a

trade-off between 1) higher throughput and 2) making it

possible for more low-power nodes to participate. Thus,

there is a demand for block space among users that wish

to get their transactions included in the blockchain, which

is supplied by the miners who create the blocks. To find

a balance between this supply and demand, users must

pay a transaction fee to the miners for including their

transaction in a block. This provides a second form of

protocol-supported payment for the miners, alongside the

block creation rewards.

Ethereum Gas: The unit that measures the amount

of computational effort required to execute transactions

on the Ethereum blockchain is referred to as gas. For

example, creation of a new smart contract may require

500, 000 units of gas, but a simple transfer of ETH

tokens typically requires only 21, 000 units of gas. The

use of gas units (or simply gas) allowed for a uniform

implementation of transaction fees in Ethereum’s original

fee market design: for each transaction, the user would

specify a gas price that indicates the fee paid by the user

per unit of gas used to execute the transaction, and a gas
limit that indicates the maximum amount of gas that the

transaction is able to consume.

Ethereum’s Legacy Fee Market: Ethereum’s legacy

fee market mechanism, thus, closely resembled that of a

(generalized) first-price auction. Users would publish a

transaction with a fee, miners would choose the highest-

paying transactions, and each user would pay what they

bid. The higher the user was willing to pay in transaction

fees, the higher their chances of having their transactions

included in a block. However, such auctions are well-

known to be highly inefficient, leading to extreme fee

volatility and frequent over-payments [8], [19]. This is

especially observed when the network’s transaction load is

high, e.g., due to new project launches or periods of token

price volatility. To remedy these shortcomings, EIP-1559

was proposed [7].

B. EIP-1559 Transaction Fee Market

EIP-1559 is an upgrade on Ethereum’s design which

aims to address the above challenges by reforming the

transaction fee market. With its introduction on August

05, 2021 on Ethereum’s mainnet, the maximum block size

was doubled from roughly 15 million to T = 30 million

gas. However, the long-term average block size that the

system targets is half that limit, namely T/2.

Base Fee: The main element of EIP-1559 to achieve

this target is a dynamically adjusted base fee, bt, that is

updated after every block, indexed by block height t > 0,

according to the equation

bt+1 = bt

(
1 + d · Gt − T/2

T/2

)
. (1)

Here, d denotes the learning rate (or adjustment pa-
rameter), currently set at d = 0.125, and Gt the total
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gas used by transactions that were included in block

t > 0. Intuitively, if Gt > T/2, i.e., if more transactions

than targeted are included in a block, then the base fee

increases. The increase is scaled by d and is proportional

to the amount by which the current block load Gt exceeds

the target T/2. Similarly, if Gt < T/2, then the base fee

decreases, whereas if Gt = T/2, then the base fee remains

unchanged.

Bids, Tips, and Effective Gas Prices: According to

EIP-1559, instead of a single gas price, users now submit

two parameters, (f, p), as shown in Table I.

Parameter Description
f : max fee maximum amount per gas unit that the user is

willing to pay for their transaction to be included

p: max priority fee maximum tip per gas unit that the user is willing
to pay to the miner who includes their transaction

Table I: EIP-1559 user bid parameters.

If the max fee that a user is willing to pay for their

transaction is less than the algorithmically computed base

fee, i.e., if f < bt, then the transaction cannot be included

in a block. Conversely, if f ≥ bt, then the miners can in-

clude the transaction and hence earn the so-called miner’s
tip, which is calculated as miner’s tip = min {f − bt, p}
In practice, if the miner’s tip is very small (less than 2

Gwei per gas unit, where 1 Gwei = 10−9 ETH), it may be

beneficial for miners not to include the transaction. Larger

blocks are harder to transmit over the network, making it

easier for a competing block to reach other nodes faster,

causing the miner to lose out on the block creation rewards

and fees (“uncle risk”).

Importantly (and in sharp contrast to the original fee

market), the base fees are not transferred to miners: instead

they are burnt and are permanently removed from the total

supply of ETH.1 The sum of the base fee and tip fee taken

per unit gas is said to be the effective gas price and is

equivalent to the gas price that a user would have paid to

include their transaction before EIP-1559.

Legacy Transactions: EIP-1559 was introduced in

a backward-compatible manner allowing both legacy and

native EIP-1559 transaction formats to be included. How-

ever, all transactions included after block 12,965,000 are

subject to the base fee, regardless of their format. In

particular, when a legacy transaction is submitted to the

network, the max priority fee, p, and the max fee, f ,

are set by default equal to the gas price specified by the

user. The miner then earns f − bt if the transaction is

included in their block, possibly leading to overpayment

at inclusion, compared to the same transaction following

the simple EIP-1559 bidding strategy. With an EIP-1559

transaction, the user places a cap on the miner’s tip by

setting a max priority fee, whereas in a legacy transaction

all the remaining fees, after subtracting the base fee, go

to the miner.

1As of September 3rd, 2021, over 180,000 ETH were burned through
EIP-1559 transactions (source: watchtheburn.com).

III. DATA

To analyze the impact of EIP-1559 during the hon-

eymoon period, we use publicly available data recorded

on the Ethereum blockchain. Our dataset covers a period

starting from block l = 12935000, which was mined on 3

August 2021, 18:43, until block u = 13079999, which was

mined on 23 August, 06:38. EIP-1559 came into effect in

block 12965000, which was mined on 5 August 2021,

12:33 (the mentioned times are all in UTC). Our data

set is described in detail in Table II and visualized in

the next paragraphs, which a focus on both “long-term”

trends (i.e., observations from the entire study period) and

“short-term” behavior (i.e., observations regarding sudden

demand peaks or other transient phenomena).

Parameter Description

x ∈ N transaction, identified by its hash

tx ∈ N height of the block in which x was included

gt ∈ [0, 1] relative block size of the block at height t, i.e., the total
used gas Gt divided by the gas limit T

bt ∈ N base fee in the block at height t

τx ∈ {0, 1} type of x, which is “0” for legacy transactions and “1”
for EIP-1559 transactions

fx ∈ N gas price of x for legacy transactions, and the max fee
of x for EIP-1559 transactions

px ∈ N priority fee of x (for legacy transactions this is set equal
to fx)

ux ∈ N gas limit of transaction x (used as a proxy for the gas
that was actually used by the transaction)

X(t) ⊂ N set of all transactions included in block at height t

Table II: Transaction information in the dataset.

A. Long-term Trends

Average Gas Prices: First, we study the average
block gas prices during the sample period. To compute

this metric over time, we first compute the average gas

price f̂t for each block at height t, where each transaction

x is weighted by its gas limit ux:

f̂t =

(∑
x∈X(t)

uxfx

)
/

(∑
x∈X(t)

ux

)
.

We then divide the set {l, l+1, . . . , u} into 1000 batches

of size w = u−l+1
1000 , and compute the average f̂∗i for each

batch i ∈ {1, . . . , 1000} as

f̂∗i =
1

w

∑l+iw

t=l+(i−1)w
f̂t. (2)

The result is displayed in Figure 1, which shows the

evolution of the average block gas, f̂∗i .

We observe that the (average) gas prices exhibit sharp

bursts. We have found that these bursts typically corre-

spond to so-called “NFT drops”, in which a creator (or

project) announces the release of a limited number of Non-

Fungible Tokens (NFTs) [15]. This leads to a demand

surge where purchasers put in high bids to be included

first by miners. Other, lower-scale fluctuations are due

to diurnal variations in Ethereum’s usage over different

geographic locations. In Section III-B, we return to the

base fee and gas price dynamics and examine them in the
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Figure 1: Top: average (blue) and smoothed averaged (red)

gas prices over time. Bottom: average fraction (gray) and

smoothed averaged fraction (red) of EIP-1559 transactions

over time.

locality of periods of both sharp demand increases and of

relatively stable demand.

Smoothed Average Gas Prices: To dampen the effect

of the sharp bursts on the long-term trend of gas prices, we

apply a median smoothing filter to f̂∗i , which is unaffected

by large outliers unlike the moving average. To compute

the filtered value m(f̂∗i , η) of f̂∗i , where η is the half-width

of the filter, we first determine the set

V (f̂∗i , η) = {f̂∗j ∈ N : j ≥ l, j ≤ u, |j − i| ≤ η}.
We then compute the median mi = m(f̂∗i , η) as the value

such that at least 50% of the elements in V (f̂∗i , η) are

greater or equal than mi and at least 50% of the elements

in V (f̂∗i , η) are smaller or equal than mi. The result with

half-width η = 10 is displayed by the red line in Figure 1.

Fraction of EIP-1559 Transactions: We apply the

same methodology as above to the weighted fraction,

τ̂h, of EIP-1559 transactions (versus legacy transactions)

which for the block at height t is given by

τ̂t =

(∑
x∈X(t)

uxτx

)
/

(∑
x∈X(t)

ux

)
.

The result is displayed in Figure 1b. The gray line repre-

sents τ̂∗i averaged, as in equation (2), over 1000 batches

and the red line represents the corresponding smoothed

values. The i-th value in the plot corresponds to the middle

block of the i-th batch for i ∈ {1, 2, . . . , 1000}.
We observe that EIP-1559 adoption increases steadily

within our sampling period to around 60% at the end

of August. The sharp increase around block 13051500

(8 August) corresponds to the (actual date of) adoption

of EIP-1559 by the popular Ethereum wallet MetaMask.

After that point, we observe strong diurnal fluctuations

as a result of differences in wallet usage over different

geographic locations.

B. Short-term Behavior

We now take a more detailed view at the short-term

behavior of the base fee and gas price dynamics during

periods of both sharp demand increases (e.g., NFT drops)

and of relative demand stability.

Demand peaks: Figure 2a zooms in on one of the

price bursts that are visible in Figure 1, namely the one

that occurs around block 13025775 that was mined on

August 14, 2021, at 09:35. The displayed period covers

450 blocks between blocks 13025550 and 13026000.

Before the burst, average gas prices (depicted by the

blue line without marks) fluctuate between 30 and 60

Gwei, with several short bursts in which the average fee

jumps to around 120 Gwei before returning to around 45

Gwei, and several empty blocks (in which the average

fee is set to 0). The average gas price then shoots from

40.82 Gwei in block 13025736 to 207.33 and ultimately

to 1360.02 Gwei within the next two blocks.

To compare, the miner of block 13025736 earns a total

of 2.019 ETH: 2 ETH for the block creation reward, plus

0.137 in transaction fees minus 0.118 in burnt fees. In

this case, as is a typical for blocks outside price bursts,

the transaction fees are small compared to the block

rewards [20]. However, the miners of blocks 13025737 and

13025738 earn 3.472 ETH and 45.646 ETH, respectively.

In the latter case, the earnings from transaction fees are

more than 20 times greater than the block creation reward!

Concerning the base fee (depicted by the brown line

with marks), we observe that shortly after the price burst it

increases rapidly until it reaches a level slightly below the

average gas price. After that point, it starts to decline to-

gether with gas prices which gradually return to normal. In

sharp contrast to the above, block 13025768 is ultimately

far from target, netting 0.844 ETH in transaction fees for

20% block utilisation (10% of the block gas limit). Com-

paring this revenue with that of the next miner 13025769,

who received 4.868 ETH for 180% block utilisation (90%

of the block gas limit), 13025768 misses out on some

share of these fees. With a uniform process generating the

transaction arrival time, this share may be estimated to 2

ETH (an equal split between 0.844 and 4.868 ETH), worth

around $6, 500 USD at the time. These points demonstrate

an instability in inter-block mining rewards under EIP-

1559 that may require closer monitoring.
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Figure 2: (a) Average gas prices (blue) and base fees (brown) per block in the volatile period after block 13025550. (b)

Average gas prices (blue) and base fee per block (red) in Gwei, in the period of relatively stable demand that directly

followed the burst of (a). (c) Relative block sizes, ĝt, in the same period of relatively stable demand as in (b).

Demand Stability: Figure 2b displays the gas price

and base fee dynamics for the 450-block period of rel-

atively stable demand that starts immediately after the

burst of Figure 2a. During this period, both the gas price

and the base fee remain roughly stable: the former at

around 40 Gwei and the latter slightly below 30 Gwei.

However, despite the fact that the base fee remains within

a relatively narrow range of 10 Gwei, i.e., between 25

and 35 Gwei, block sizes fluctuate wildly between the two

extremes (empty to full and vice versa). This can be seen

in Figure 2c, where the green line (without marks) displays

the relative block size as a number between 0 (empty) and

1 (full). This is exactly the behavior predicted in [1], [13],

and can be attributed to the discrete nature of the updates

and the size of d.

However, it is interesting to observe that block sizes do,

in fact, seem to reach (or, actually, only slightly overshoot)

the target block size on average. As shown in Figure 2c,

the median filter with half-width 30 applied to ĝt (red

line with marks) is indeed centered around 0.5 (half-full

blocks). Providing theoretical reasons for or empirically

testing this observation over longer periods of data is an

interesting direction for future work.

IV. SIMULATIONS: LEARNING RATE IN EIP-1559

As established by the short-term analysis in the previous

section, there are two opposing effects concerning the

learning rate d. In particular, the default d (set at 0.125)

is too low during periods of short bursts (during which

the base fee lags in catching up to actual demand) but is

also too high during periods of relative stability (where it

induces intense oscillations in block sizes despite keeping

the base fee relatively stable). While long-term trends

suggest that block-sizes achieve the target of half-full

blocks on average, these fluctuations have significant ef-

fects on miners’ earnings and thus, potentially, on protocol

stability.

As such, we investigate the impact of choosing a

different d (constant or variable) on the network. To do

so, we run a series of simulations in which we observe

the base fee after transaction bids are drawn randomly.

A. Constant Learning Rate

The main challenge in simulating (i.e., replaying using a

stochastic model) the evolution of the transaction fee mar-

ket for different values of d (or alternative mechanisms) is

to draw accurate estimates for the actual demand and the

users’ valuations from the available data. The difficulty

stems from the fact that observable bids – i.e., those in-

cluded on the blockchain – do not necessarily reflect users’

true valuations, but merely their valuations/expectations

about the current and future base fees and their urgency

to get their transaction included. Furthermore, they do not

include low-value bids that were not included.

Behavioral Model: As such, we make some as-

sumptions – justified by our current data and Ethereum’s

previous simulations, see [1], [6], [13] – and leave a deeper

investigation of bids, e.g., with questionnaires to users,

as an open challenge for future research. Accordingly,

we model the number of users in each time slot using

a Poisson demand with arrival rate λ and a distribution

of valuations, F . As mentioned above, both λ and F
are subject to change over time – e.g., due to the effects

of weekends and weekdays, day/night cycles in different

regions, sudden bursts due to popular contracts and NFT

launches – and therefore challenging to infer from the

available data.

Execution Model: Given a Poisson distribution of

transaction arrivals (i.e., demand) with time-dependent

arrival rate λt and valuation distributions Ft, the simulator

executes the steps of Algorithm 1 in each time slot t.

Algorithm 1 first calls draw num transactions(λt),
which pseudo-randomly draws a value nt from the Pois-

son distribution with mean λt ≡ 3 (adopted from [1]).

The function draw transactions(nt, f̂t) then draws nt

samples from Ft that represent the valuations of the

transactions created at time t, given the observed median-

smoothed average gas price in the block at height t,
denoted by f̂t. These values are then stored in the set m′t.
We have observed that a mixture of uniformly distributed

and Pareto-distributed random samples, with means that

depend on the smoothed average fees, results in a good
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Algorithm 1: Simulation of EIP-1559 Updates

Input: Demand parameters λt, f̂t, base fee bt−1 at

block height t− 1 and learning rate d.

Output: base fee at block height t.
1 nt ← draw num transactions(λt)

2 m′t ← draw transactions(nt, f̂t)
3 mt ← m update(mt−1,m

′
t)

4 Bt ← B update(mt)
5 gt ← |Bt|/T
6 bt ← b update(bt−1, d, |Bt|)

correspondence with the observed values’ distribution. We

then draw the valuations of 2.75nt transactions from a

uniform distribution near 0.75f̂t, and draw the remaining

0.25nt valuations from a Pareto distribution with shape

1.35 and scale 1
10 f̂t. The reasoning behind this modelling

choice is to divide users into two broad classes. The first

class consists of regular users for whom the delay before

the transaction appears on the blockchain is relatively

unimportant, and who simply bid a value that (they be-

lieve) ensures that their transaction is eventually included.

The second class consists of high-urgency users who

make high bids to ensure that their transaction is included

rapidly, and whose valuations more closely resemble a

heavy-tailed distribution. The parameters were chosen to

give a good correspondence with the studied dataset, but

we have found that minor variations did not change the

overall conclusions of our evaluation, cf. Table V.

After having drawn m′t, Algorithm 1 combines the

transactions in m′t with the process mt, which repre-

sents the mempool, i.e., the set of transactions that are

pending to be included in the blockchain. The function

m update(m,m′) returns a new mempool given an ex-

isting mempool m and a set m′ of new transactions. In our

simulations, transactions remain in the mempool until they

are included. The function B update(m) is then executed

by the miner. B update(m) returns a vector B with the

max fees of the transactions that have been included in the

new block given the mempool m. We denote the length of

B as |B|. Finally, the function b update(b, d, |B|) returns

the new base fee as a function of the current base fee b,
the learning rate d and the block size |B|.

B. Variable Learning Rate: AIMD Updates

To address the issue that the current learning rate

appears too high in stable-demand periods and too low in

periods with demand peaks, we also propose and simulate

a mechanism with a variable learning rate. In particular,

motivated by the effectiveness of such schemes to control

internet congestion [21], we study an additive increase
and multiplicative decrease (AIMD) update scheme for

the learning rate d.

According to the AIMD scheme, the learning rate is

adjusted with respect to a parameter, gAVG, that keeps

track of the average relative block sizes (gt = Gt/T , cf.

Table II) during some pre-specified rolling window. The

Parameter Description
gAVG average relative block-size of previous blocks

n ∈ N nr. of previous blocks over which gAVG is computed.

α > 0 size of an additive increase

β ∈ [0, 1] factor of a multiplicative decrease

γ ∈ [0, 1
2
] threshold for an additive increase

dmin, dmax minimum and maximum values for d.

Table III: Parameters of the AIMD algorithm.

intuition is the following: when gAVG is close to the target

block-size, 0.5, then the base fee is close to the right value,

so the algorithm reduces the learning rate to reduce the

size of the oscillations. By contrast, if gAVG is too small

or high, then the base fee is apparently far away from its

equilibrium value, and the algorithm increases the learning

rate.

Execution Model (AIMD): The AIMD update scheme

uses the parameters in Table III. It then replaces line 6 in

Algorithm 1 with the following two lines which update

Algorithm 2: Modified Alg. 1 with AIMD updates

6 dt ← d update(dt−1, gt−n+1, . . . , gt)
7 bt ← b update(bt−1, dt, |Bt|)

the learning rate parameter d according to Algorithm 3

(following the intuition described above):

Algorithm 3: AIMD update routine d update.

Input: Learning rate, dt, window n, block-sizes

gt−n+1, . . . , gt, update parameters α, β, γ.

Output: Learning rate, dt+1.

1 gAVG ← 1
n

∑t
t−n+1 gi

2 if gAVG < γ or gAVG > 1− γ then
3 dNEW ← min{dmax, α+ d}
4 else
5 dNEW ← max{dmin, βd}
6 return dNEW

V. EVALUATION

We now proceed to compare the different update me-

chanisms described in the previous section. We present

simulations of the standard EIP-1559 update rule with

constant step sizes at d = 0.125 (default), d = 0.25
and d = 0.0625 which are representative of high and

low rates, respectively, and of the AIMD (variable step

size) update rule with parameters n = 8, α = 0.025, β =
0.95, γ = 0.25, dmin = 0.0125 and dmax = 1. Note that

n is selected to be low enough to reflect recent market

conditions, but high enough to reduce its sensitivity to

temporal fluctuations in demand.

A. Performance Metrics

To compare the performance of the different mecha-

nisms, we use the two metrics described in Table IV.
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Figure 3: Simulation of average gas prices in Gwei (blue lines) and base fees (red lines) in stable (top) and peak demand

periods (bottom) of the EIP-1559 market under different learning rates. Unlike standard EIP-1559 mechanisms with slow

or fast learning rates (d = 0.125 being the default), the AIMD mechanism exhibits good performance in both scenarios.

Parameter Description

ĝ long-term average relative block size

pg>0.95 long-term fraction of blocks whose relative size is
greater than 0.95.

Table IV: Performance metrics.

The first metric, ĝ, should be as close to 0.5 as pos-

sible, as this is the target set by the miners. When ĝ is

(considerably) larger than 0.5, propagation and execution

time of new blocks increase, putting stress on the network

of miners to validate all new items. Conversely, when

ĝ is (considerably) lower than 0.5, network capacity is

under-utilized. The situation where ĝ is slightly below

0.5 more closely resembles the original target setting of

the Ethereum network before EIP-1559 with max block

size of T/2 making such states marginally preferable over

ones where ĝ is slightly above 0.5.

The second metric, pg>0.95 should be as low as possible,

even if ĝ approximates 0.5 (e.g., due to full blocks

counterbalancing empty blocks). When block-sizes are

consistently high, the transaction fee market approaches

the behavior of a first-price auction, losing some of the

advantages of EIP-1559 [12].2

B. Simulation Results

The effect of choosing different learning rates in the

standard EIP-1559 mechanism is displayed in Figure 3.

We visualize two scenarios: the stable period from Fig-

ure 2b (top row), and the NFT drop from Figure 2a

(bottom row). The blue lines show the simulated demand

2The reason that we do not consider pg=1 is purely technical: since
not all transaction have the same size, in some cases a block will only
use, say, 99% of its gas and yet it will still be considered “full” in the
sense that no other available transactions can be added to it.

which approximates the actual demand, cf. Figures 2a

and 2b.

As intuitively expected, the oscillations of the base fee

(brown line with marks) in the stable scenario decrease as

the learning rate decreases. Similarly, in the NFT drop

scenario, the fast learning rate mechanism, d = 0.25,

swiftly adapts to the changing situation, whereas the other

two learning rate mechanisms generate long periods of

discrepancies between the base fee and market demand.

The important takeaway, however, concerns the AIMD

mechanism (panels in the last column), which turns out

to share the advantages of both approaches. In particular,

when the system is relatively stable, it selects a learning

rate of d = 0.0125 (lower than the current default of

d = 0.125) that increases swiftly during demand peaks.

This results in low oscillations of the base fee during

the stable period (top row) and a timely increase during

the demand peak period (bottom row). To emphasize

this, we have also displayed in Figure 4 the block sizes

and the evolution of the learning rate d for the AIMD

scheme. We set d = 0.125 as the initial value, and

observe that in both scenarios the learning rate decreases

to its minimum values, dmin = 0.0125. However, in the

NFT drop scenario, the learning rate rapidly increases to

over 0.45, and then decreases again when the base fee

starts to reflect market conditions. In the stable scenario,

we observe from Section V-C that although there are

still oscillations, they are noticeably less intense than in

Figure 2c.

To further quantify this performance, Table V contains

the results for both metrics, ĝ and pg>0.95, over three

scenarios: the stable period (450 blocks), the demand peak

period (450 blocks), and our full dataset of blocks after

EIP-1559 (115,000 blocks).

In Table V, below each point estimate of ĝ and pg>0.95
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Stable periods ĝ pg>0.95 Demand peaks ĝ pg>0.95 Full dataset ĝ pg>0.95

empirical 0.523 0.261 empirical 0.528 0.281 empirical 0.523 0.244
si

m
u

la
ti

o
n

d = 0.0625 0.505
±0.000

0.150
±0.005

si
m

u
la

ti
o

n

d = 0.0625 0.511
±0.000

0.222
±0.004

si
m

u
la

ti
o

n

d = 0.0625 0.505
±0.000

0.186
±0.000

d = 0.125 0.510
±0.000

0.214
±0.004

d = 0.125 0.513
±0.000

0.232
±0.004

d = 0.125 0.510
±0.000

0.232
±0.000

d = 0.25 0.520
±0.000

0.255
±0.002

d = 0.25 0.522
±0.000

0.265
±0.003

d = 0.25 0.520
±0.000

0.264
±0.000

AIMD 0.499
±0.001

0.058
±0.003 AIMD 0.481

±0.002
0.126
±0.003 AIMD 0.501

±0.000
0.047
±0.000

Table V: Empirical evaluation of the different EIP-1559 mechanisms with low, default (d = 0.125), and high learning

rates in terms of the performance metrics ĝ (average block size) and pg>0.95 (probability that a block is more than 95%
full). The AIMD mechanism has the best performance in terms of pg>0.95 in both the stable and unstable scenarios,

and across the entire post-EIP-1559 dataset (bold values).

we also display the half-width of a 95% confidence

interval for the corresponding value based on the normal

distribution. For each entry in the table, we conducted 20
simulation experiments – despite the small sample size,

we note that the variance is fairly low since each sampled

estimate of ĝ and pg>0.95 is itself an average over at

least 450 blocks. For each scenario, we also display the

empirical result, i.e., the values of ĝ and pg>0.95 that were

observed in the data set.

Importantly, the AIMD has a low number of full blocks

in all three scenarios and hence exhibits the best perfor-

mance in terms of pg>0.95 by a wide margin when com-

pared to the other methods. AIMD updates also achieve the

desired average relative block size (ĝ ≈ 0.5). Consistent

with our empirical observations, all standard EIP-1559

updates also approximate, yet, consistently overshoot by a

small margin, the target block-size on average, but perform

poorly on the pg>0.95 metric. This suggests the presence

of more than 20% almost full blocks counterbalanced by

a similar amount of almost empty blocks.

C. Discussion

Given the desirable properties showcased by the AIMD

over the standard EIP-1559 update rules in the above

simulations, it is natural to ask whether the AIMD update

rule could actually fit in the current scope of EIP-1559.

In particular, the default, more moderate EIP-1559 update

that corresponds to a fixed d = 0.125 aims to achieve the

following goals: (i) generate more predictable fees against

comparable market conditions, (ii) adapt fees to prevailing

demand, (iii) fight inflation by burning excessive fees

instead of transferring them to miners, and (iv) tame

strategic behavior by protocol participants, both miners

and users. In the following, we discuss how an AIMD

update rule would perform along these axes.

Predictability and Adaptation: Concerning the first

two goals, there is a certain amount of trade-off between

short-term fee predictability and swiftly responding to

changing market conditions. However, the high-level goals

of next-block inclusion and invariant block sizes tip the

scale towards more responsive fee mechanisms.

Excessive Fees: Concerning the goal of controlling

inflation, it is tempting to think that a slow-adapting mech-

anism may burn more fees by allowing full blocks during

demand peaks. However, users’ valuations are typically

skewed towards higher values [2], [22] and higher fees

at periods of increased demand can actually reap higher

amounts of burned coins.

Strategic Behavior: The fourth goal, that of mit-

igating strategic behavior by miners or users, is more

intricate and merits a separate discussion. Apart from

general attacks on the PoS consensus layer [23], [24], there

is an open debate on the vulnerabilities of the EIP-1559 fee

market (in its original format) against exacerbated versions

of existing or novel attack vectors [18]. One such example

is the zero-base fee attack, in which a coalition of miners

who control 51% of the network’s resources collectively

drive the base fee down to zero by continuously mining

empty blocks. At that point the only determining factor for

transaction inclusion are miner’s tips, essentially moving

the system back to the previous first price auction model.

While the practical feasibility of such an attack is still

unclear, it is a necessary to look at the effects of the more

responsive AIMD update rule on miner’s incentives via

a more comprehensive threat model. We leave this as a

direction for future work.

VI. CONCLUSIONS & OPEN QUESTIONS

Using on-chain data from the first month after its

launch, we studied the early stages of Ethereum’s EIP-

1559 fee market upgrade. We found evidence that the

current fixed learning rate – the parameter that is used

to adjust the base fee after each block based on network

congestion – achieves the target block-size on average

(or rather, slightly overshoots it). However, it may have

a considerable destabilizing effect on mining earnings –

via slow adjustments during demand bursts and intense

oscillations in block occupancies during periods of stable

demand – and on the user experience. Such phenomena

may lead to strategic behavior and ultimately pose a threat

to the stability of the fee market.

Our simulations suggest that a promising direction to

improve upon the current EIP-1559 format is the use of

variable learning rates. In particular, we studied an additive

increase, multiplicative decrease (AIMD) update scheme

for the learning rate that resulted in superior performance

over standard EIP-1559 formats across periods of both

demand bursts and demand stability.

Given this range of results, a number of interesting

open questions emerge. Specifically, it will be instructive
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Figure 4: Block sizes and learning rate evolution under the variable learning rate AIMD scheme during the demand peak

(first and second panel) and stable demand periods (third and fourth panels), respectively. AIMD adjusts the learning

rate during the demand peak and uses a lower than default learning rate to dampen the oscillations (in particular, empty

or almost empty blocks) during the stable demand period (cf. EIP-1559 performance in Figures 2a and 2b.

to monitor the impact of EIP-1559 over longer time

spans (i.e., beyond the “honeymoon” period), to study

different learning rate update schemes (e.g., multiplicative

increase, additive decrease, or exponential updates) and to

derive accurate estimates of Ethereum’s recurring demand

conditions to systematically optimize the parameters of the

proposed AIMD scheme. Finally, as mentioned above, it

will be interesting to develop a strategic threat model to

analyze how miners’ and users’ incentives change between

the default EIP-1559 mechanism and the proposed AIMD

update rule. Any progress in the above directions will

contribute to the ongoing discussion about EIP-1559 and

to the design of more efficient transaction fee mechanisms

in general.
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