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Abstract

Fictitious Play (FP) is a simple and natural dynamic for repeated play with many1

applications in game theory and multi-agent reinforcement learning. It was intro-2

duced by Brown [3, 4] and its convergence properties for two-player zero-sum3

games was established later by Robinson [15]. Potential games [12] is another4

class of games which exhibit the FP property [11], i.e., FP dynamics converges5

to a Nash equilibrium if all agents follows it. Nevertheless, except for two-player6

zero-sum games and for specific instances of payoff matrices [1] or for adversarial7

tie-breaking rules [8], the convergence rate of FP is unknown. In this work, we8

focus on the rate of convergence of FP when applied to potential games and more9

specifically identical payoff games. We prove that FP can take exponential time (in10

the number of strategies) to reach a Nash equilibrium, even if the game is restricted11

to two agents and for arbitrary tie-breaking rules. To prove this, we recursively12

construct a two-player coordination game with a unique Nash equilibrium. More-13

over, every approximate Nash equilibrium in the constructed game must be close14

to the pure Nash equilibrium in ℓ1-distance.15

1 Introduction16

In 1949 Brown proposed an uncoupled dynamics called fictitious play so as to capture the behavior17

of selfish agents engaged in a repeatedly-played game. Fictitious play assumes at round t = 1, each18

agent selects an arbitrary action. At each round t ≥ 2, each player plays a best response pure action19

to the opponents’ empirical strategy; empirical strategy is defined to be the empirical average of the20

past chosen strategies.21

Due to its simplicity and natural behavioral assumptions, fictitious play is one of the most seminal22

and well-studied game dynamics [6]. Despite the fact that fictitious play does not converge to a Nash23

equilibrium (NE) in general normal-form games, there are several important classes of games at24

which the empirical strategies always converge to a NE. In her seminal work, Robinson [15] showed25

that in the case of two-player zero-sum games, the empirical strategy profiles converge to a min-max26

equilibrium of the game; Robinson’s proof use a smart inductive argument on the number of strategies27

of the game. Later, Monderer and Shapley [11] established that in the case of N -player potential28

games, the empirical strategies also converge to a NE. Summing up, the following theorem is true:29

Informal Theorem [15],[11] In two-player zero-sum and N -player potential games, the empirical30

strategy profiles of fictitious play converge to a NE for any initialization and tie-breaking rule1.31

The above convergence results are asymptotic in the sense that they do not provide guarantees on32

the number of rounds needed by fictitious play to reach an approximate NE. Karlin [10] conjectured33

1Tie-breaking rule when selecting between two or more different best-response actions.
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that in the case of two-player zero-sum games, fictitious play requires O(1/ϵ2) rounds to reach34

an ϵ-approximate NE. Daskalakis et. al. [8] disproved the strong version of Karlin’s conjecture35

by providing an adversarial tie-breaking rule for which fictitious play requires exponential number36

of rounds (with respect to the number of strategies) in order to converge to an ϵ-approximate NE.37

However there are no such lower bounds results in the case of potential games. In this paper we38

investigate the following question.39

Q: Does fictitious play in potential games admit convergence to an approximate NE with rates that40

depend polynomially on the number of actions and the desired accuracy?41

Our contributions Our work provides a negative answer on the above question. Specifically, we42

present a two-player potential game for which fictitious play requires super-exponential time with43

respect to the number of actions to reach an approximate NE.44

Theorem 1.1 (Main result, formally stated Theorem 3.1). There exists a two-player potential game45

(more specifically both agents have identical payoffs) in which both agents admit n actions and for46

which fictitious play requires Ω
(
4n
((

n
2 − 2

)
!
)4

+ 1
n
√
ϵ

)
rounds in order to reach an ϵ-approximate47

NE. Moreover, the result holds for any tie-breaking rule and uniformly random initialization.48

Remark 1.2. Daskalakis et al. [8] provide an exponential lower bound on the convergence of fictitious49

play assuming an adversarial tie-breaking rule, meaning that ties are broken in favor of slowing50

down the convergence rate. To this point, it is not known whether fictitious play with a consistent51

tie-breaking rule (e.g. lexicographic) converges in polynomial time or not, except for special cases,52

e.g., diagonal payoff matrices [1]. We would like to note that our lower bound construction holds for53

any tie-breaking rule. The latter indicates an interesting discrepancy between two-player zero-sum54

and two-player potential games.55

Related Work The work of Daskalakis et al. [8] provides a lower bound on the convergence rate56

of fictitious play for the case of two-player zero-sum games using an adversarial tie-breaking rule57

and is the most close to ours. Another work we must highlight is [1] in which the authors show that58

if the tie-breaking rule is fixed in advance (e.g., lexicographic), then fictitious play converge rate is59

polynomial in the number of actions/strategies and is O
(

1
ϵ2

)
. Other works include convergence of60

fictitious play for near-potential games [5], sufficient conditions games must satisfy so that fictitious61

play converges to a NE, using decomposition techniques [7]; the aforementioned results do not62

include rates for fictitious play. Fast convergence rates of continuous time fictitious play for regular63

potential games are established [17] (these are games in which the NE are regular according to the64

definition of Harsanyi). Other works on continuous time fictitious play include [14] (and references65

there in). Fictitious play dynamics has found various application in Multi-agent Reinforcement66

Learning as well (see [13, 16, 2] and [18] for a survey and references therein) and extensive form67

games (using deep RL) [9] to name a few2.68

Technical overview The technical overview of this paper provides a high-level roadmap of the69

key contributions. In Section 3, we outline the steps towards proving Theorem 3.1 by recursively70

constructing a payoff matrix of carefully crafted structural properties. In that matrix, starting from the71

lower-left element, the sequence of successive increments form a spiraling trajectory that converge72

towards the element of maximum value. We demonstrate that fictitious play has to follow the same73

trajectory, passing through all non-zero elements, to reach the unique pure Nash equilibrium, as74

illustrated in Figure 2. A crucial component of the proof is provided by an induction argument75

that emulates the movement of fictitious play and provides a super-exponential lower bound on the76

number of rounds needed.77

2 Preliminaries78

2.1 Notation and Definitions79

Notation Let R be the set of real numbers, and [n] = {1, 2, . . . , n} be the set of actions. We80

define ∆n as the probability simplex, which is the set of n-dimensional probability vectors, i.e.,81

2Due to the vastness of the literature in fictitious play, it is not possible to include all the works that have
either been used or been inspired by this method.
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∆n := {x ∈ Rn : xi ≥ 0,
∑n

i=1 xi = 1}. We use ei to denote the i-th elementary vector, and to refer82

to a coordinate of a vector, we use either xi or [x]i. The superscripts are used to indicate the time at83

which a vector is referring to.84

Normal-form Games In a two-player normal-form game we are given a pair of payoff matrices85

A ∈ Rn×m and B ∈ Rn×m where n and m are the respective pure strategies of the row and the86

column player. If the row player selects strategy i ∈ [n], and the column player selects strategy87

j ∈ [m], then their respective payoffs are Aij for the row player and Bij for the column player.88

The agents can use randomization. A mixed strategy for the row player is a probability distribution89

x ∈ ∆n over the n rows, and a mixed strategy for the column player is a probability distribution90

y ∈ ∆m over the m columns. After the row player selects mixed strategy x ∈ ∆n, and the column91

player selects mixed strategy y ∈ ∆m, their expected payoffs are x⊤Ay and x⊤By, respectively.92

Potential Games A two-player potential game is a class of games that admit a unique function93

Φ, referred to as a potential function, which captures the incentive of all players to modify their94

strategies. In other words, if a player deviates from their strategy, then the difference in payoffs is95

determined by a potential function Φ evaluated at those two strategy profiles. We can express this96

formally as follows:97

Definition 2.1 (Two-player Potential Game). For any given pair of strategies (x, y) and a pair of98

unilateral deviations x′ by the row player and y′ by the column player, the difference in their utility is99

equivalent to the difference in the potential function.100

(x′)⊤Ay − x⊤Ay = Φ(x′, y)− Φ(x, y) and x⊤A(y′)− x⊤Ay = Φ(x, y′)− Φ(x, y)

Remark 2.2. We note Φ is a function that characterizes the equilibria of the game as the strategy101

profiles that maximize the potential function.102

In this work, we focus on a specific type of potential games called identical payoff games, where both103

players receive the same payoff.104

Definition 2.3 (Identical Payoff Games). A two-player normal-form game (A,B) is called identical105

payoff if and only if A = B.106

In this scenario, it is apparent that the potential function is given by Φ(x, y) = x⊤Ay. Finally we107

provide the definition of an approximate NE.108

Definition 2.4 (ϵ-Nash Equilibrium). A strategy profile (x⋆, y⋆) ∈ ∆n × ∆m is called an ϵ-109

approximate NE if and only if110

(x⋆)⊤Ay⋆ ≥ x⊤Ay⋆ − ϵ ∀x ∈ ∆n and (x⋆)⊤By⋆ ≥ (x⋆)⊤By − ϵ ∀y ∈ ∆m

In words, an approximate Nash equilibrium is a strategy profile in which no player can improve their111

payoff significantly by unilaterally changing their strategy, but the strategy profile may not necessarily112

satisfy the precise definition of a Nash equilibrium.113

Remark 2.5. We highlight two special cases of the ϵ-NE. Firstly, when ϵ is equal to zero, it is referred114

to as an exact Nash equilibrium. Secondly, when the support of strategies is of size 1, it is called a115

pure Nash equilibrium. It is worth noting that potential games always admit a pure NE.116

2.2 Fictitious Play117

Fictitious play is a natural uncoupled game dynamics at which each agent chooses a best response to118

their opponent’s empirical mixed strategy. Since there might be several best response actions at a119

given round, fictitious play might contain different sequences of play; see Definition 2.6.120

Definition 2.6 (Fictitious Play). An infinite sequence of pure strategy profiles121

(i(1), j(1)), . . . , (i(t), j(t)), . . . is called a fictitious play sequence if and only if at each round t ≥ 2,122

i(t) ∈ argmax
i∈[n]

t−1∑
s=1

Aij(s) and j(t) ∈ argmax
j∈[m]

t−1∑
s=1

Bi(s)j (1)

The empirical strategy profile of row and column player at time T is defined as x̂(T ) =123 (
1
T

∑T
s=1 ei(s)

)
and ŷ(T ) =

(
1
T

∑T
s=1 ej(s)

)
where ei(t) , ej(t) are the elementary basis vectors.124
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Definition 2.7 (Cumulative utility vector). For an infinite sequence of pure strategy profiles125

(i(1), j(1)), . . . , (i(t), j(t)), . . ., the cumulative utility vectors of the row and column player at round126

t ≥ 1 are defined as,127

R(t) =

t−1∑
s=1

Aej(s) and C(t) =

t−1∑
s=1

e⊤i(s)B.

Remark 2.8. Fictitious play assumes that each agent selects at each round t ∈ [T ] a strategy with128

maximum cumulative utility. The latter decision-making algorithm is also known as Follow the Leader.129

We remark that the latter alternative interpretation provides a direct generalization of fictitious play in130

N -player games.131

In their seminal work, Monderer et al.[11] established that in case of identical payoff games the132

empirical strategies of any fictitious play sequence converges asymptotically to a NE.133

Theorem 2.9 ([11]). Let a fictitious play sequence (i(1), j(1)), . . . , (i(t), j(t)), . . . for an identical134

payoff game described with matrix A. Then, there exists a round T ⋆ ≥ 1 such that for any t ≥ T ⋆,135

the empirical strategy profile (x̂(t), ŷ(t)) converges to a NE with a rate of 1/t.136

On the positive side, Theorem 2.9 establishes that any fictitious play sequence converges to a Nash137

equilibrium in the case of potential games 3 On the negative side, Theorem 2.9 does not provide138

any convergence rates, since the round T ⋆ depends on the specific fictitious play sequence and its139

dependence on the number of strategies is rather unclear.140

3 Main Result141

In this section, we outline the steps towards proving Theorem 3.1, as it is stated below. Firstly, we142

introduce a carefully constructed payoff matrix A of size n× n and analyze its structural properties143

in Section 3.1. Next, in Section 3.2, we investigate the behavior of fictitious play when the game144

is an two-player identical payoff game with this matrix A. We also present a set of key statements145

that are necessary for proving the main theorem. Finally, in Section 3.3, we provide a proof for the146

fundamental Lemma 3.8.147

Theorem 3.1. Let an identical payoff game defined with the matrix A of size n × n and consider148

any fictitious play sequence (i(1), j(1)), . . . , (i(t), j(t)), . . . with (i(1), j(1)) = (n, 1). In case the149

empirical strategy profile (x̂(T ), ŷ(T )) is an ϵ-approximate Nash equilibrium then it holds150

T ≥ Ω

(
4n((n/2− 2)!)4 +

1

n
√
ϵ

)
.

Moreover, the lower bound on T is independent of the tie-breaking rule. Finally, if the initialization151

is chosen uniformly at random, then the expected number of rounds to reach an ϵ-approximate Nash152

equilibrium is Ω
(

4n((n/2−2)!)4+1/n
√
ϵ

n2

)
.153

3.1 Construction and Analysis of the Payoff Matrix A154

We begin by introducing our recursive construction for the payoff matrix, which we use to establish155

the formal statement of Theorem 3.1.156

Definition 3.2. For any z > 0 and n even, consider the following n× n matrix Kn(z).157

1. For n = 2, Kn(z) =

(
z + 2 z + 3
z + 1 0

)
.158

2. For n ≥ 4,159

• Kn
n1(z) = z + 1 and Kn

nj(z) = 0 for j /∈ {1}. Row n160

• Kn
n1(z) = z + 1,Kn

11(z) = z + 2 and Kn
1j(z) = 0 for any j /∈ {1, n}. Column 1161

3For the sake of exposition, we have stated Theorem 2.9 only for the case of identical payoff games. However,
we remark that the same theorem holds for general N -player potential games.
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Kn(z) =



(z + 2) 0 0 (z + 3)

0 0

0

0 (z + 4)

(z + 1) 0 0 0

Kn−2(z + 4)


(a) Recursive construction of A.

K6(0) =



2 0 0 0 0 3

0 6 0 0 7 0

0 0 10 11 0 0

0 0 9 0 8 0

0 5 0 0 0 4

1 0 0 0 0 0


(b) An example for z = 0 and n = 6.

• Kn
11(z) = z + 2, Kn

1n(z) = z + 3 and Kn
1j(z) = 0 for j /∈ {1, n}. Row 1162

• Kn
1n(z) = z + 3,Kn

n−1n(z) = z + 4 and Kn
nj(z) = 0 for j /∈ {1, n− 1}. Column n163

• For all i, j ∈ {2, . . . , n− 1} × {2, . . . , n− 1}, Kn
ij(z) := Kn−2

i−1j−1(z + 4).164

In Figures 1a and 1b, we provide a schematic representation of Definition 3.2 and an illustrative165

example for n = 6 and z = 0. For the sake of simplicity, we have intentionally omitted the remaining166

zeros in the outer rows, and columns of the matrix.167

The construction of the payoff matrix exhibits an interesting circular pattern, which begins at the168

lower left corner and extends along the outer layer of the matrix. More specifically, the first increment169

occurs in the same column as the starting point, i.e., at position (1, 1) on the first row. The pattern170

then proceeds to the next greater element on the same row but a different column, i.e., at position171

(1, n), and the last increment before entering the inner sub-matrix is located on the same column but172

on the (n− 1)-th row.173

Sequence of increments: (n, 1) → (1, 1) → (1, n) → (n− 1, n) → (n− 1, 1) → · · ·︸ ︷︷ ︸
Kn−2(z+4)

The increments have been carefully selected to ensure that there are alternating changes in row and174

column when starting from the lower-left corner and following the successive increments, until175

reaching the sub-matrix in the center. Once inside the sub-matrix, a similar pattern continues. As we176

will explore later on, the structure of the payoff dictates the behavior of fictitious play. We denote the177

payoff matrix under consideration as A, which is defined as A := Kn(0). The subsequent statements178

establish the key properties of A.179

Observation 3.3 (Structural Properties of matrix A). Let the matrix A = Kn(0), then for i ∈180

{0, . . . , n
2 − 1} the following hold:181

• The only elements with non-zero values in column i+ 1 are located at positions i+ 1 and n− i,182

and have values 4i+ 2 and 4i+ 1, respectively.183

• The only non-zero elements of row i+1 are located at positions i+1 and n− i, and have values184

4i+ 2 and 4i+ 3, respectively.185

• The only non-zero elements of column n− i are located at positions i+ 1 and n− i− 1 and186

have values 4i+ 3 and 4i+ 4, respectively.187

• The only non-zero elements of row n− i are located at positions i+ 1 and n− i+ 1, and have188

values 4i+ 1 and 4i, respectively.189

Observation 3.4. The maximum value of A is 2n− 2 and is located at the entry
(
n
2 ,

n
2 + 1

)
.190

Proposition 3.5. For any non-zero element in the matrix A, there is at most one non-zero element191

that is greater and at most one non-zero element that is smaller in the same column or row.192

Proof. By Observation 3.3, each row and column of matrix A contains at most two non-zero elements193

that are necessarily different to each other. Thus, if (i, j) is a non-zero element of A, there can be at194

most two additional non-zero elements in row i and column j combined. Moreover, at most one of195

these elements can be greater and at most one can be smaller.196
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One of the central components of the main theorem is presented below. Lemma 3.6 establishes that197

in an identical payoff game with matrix A, any approximate Nash equilibrium must distribute the198

majority of its probability mass to the maximum element in A, which is located at the entry (n2 ,
n
2 +1).199

The proof of this theorem is based solely on the structural properties presented in Observation 3.3,200

and is provided in the Appendix.201

Lemma 3.6 (Unique ϵ2-NE). Let ϵ ∈ O(n3) and consider an ϵ2-approximate Nash Equilibrium202

(x∗, y∗). Then the following hold,203

x∗
n
2
≥ 1− nϵ and y∗n

2 +1 ≥ 1− nϵ

Lemma 3.6 not only establishes that the only Nash equilibrium of the identical-payoff game with204

matrix A corresponds to the strategies (n2 ,
n
2 + 1), but it also implies that this is the only exact Nash205

equilibrium (i.e., ϵ = 0). This observation follows from Observation 3.4, which states that the entry206

(n2 ,
n
2 + 1) corresponds to a maximum value of A and hence it is a Nash equilibrium as it dominates207

both the row and the column that it belongs to. We can formally state this observation as follows.208

Corollary 3.7 (Unique pure NE). In an identical-payoff game with payoff matrix A, there exists a209

unique pure Nash equilibrium at
(
n
2 ,

n
2 + 1

)
.210

3.2 Lower Bound for Fictitious Play in a Game with Matrix A211

In this subsection, we present the proof of Theorem 3.1. To achieve this, we first prove that fictitious212

play requires super-exponential time before placing a positive amount of mass in entry (n2 ,
n
2 + 1).213

This result is established by our main technical contribution of the subsection, which is Lemma 3.8.214

Lemma 3.8. Let an identical-payoff game with payoff matrix A and a fictitious play sequence215

(i(1), j(1)), . . . , (i(t), j(t)), . . . with (i(1), j(1)) = (n, 1). Then, for all ℓ = {0, . . . , n
2 −1} there exists216

a round Tℓ ≥ 1 such that:217

1. the agents play the strategies (n− ℓ, ℓ+ 1) for the first time,218

2. all rows r ∈ [ℓ+ 1, n− ℓ− 1] admit 0 cumulative utility, R(Tℓ)
r = 0,219

3. all columns c ∈ [ℓ+ 2, n− ℓ] admit 0 cumulative utility, C(Tℓ)
c = 0.220

Moreover for ℓ ≥ 2, the cumulative utility of row n− ℓ at round Tℓ is greater than221

R
(Tℓ)
n−ℓ ≥ 4ℓ(4ℓ− 1)(4ℓ− 2)(4ℓ− 3) ·R(Tℓ−1)

n−ℓ while R
(T1)
n−1 ≥ 4. (2)

Using Lemma 3.8 we are able to establish that for a very long period of time the row player has never222

played row n
2 and that the column player has never played column n

2 + 1.223

Lemma 3.9 (Exponential Lower Bound). Let an identical-payoff game with matrix A and a ficti-224

tious play sequence (i(1), j(1)), . . . , (i(t), j(t)), . . . with (i(1), j(1)) = (n, 1). In case (i(T ), j(T )) =225

(n2 ,
n
2 + 1) then T ≥ Ω(4n((n/2− 2)!)4).226

Proof. Based on Lemma 3.8, we can guarantee the existence of a round T ⋆ := Tn/2−1 when the227

players choose the strategy profile (n2 + 1, n
2 ) for the first time. In addition, at round T ⋆, it holds228

that R(T⋆)
n/2−1 > 0 and C

(T⋆)
n/2+1 = R

(T⋆)
n/2 = 0. The latter condition ensures that the strategy profile229

(n2 ,
n
2 + 1) has not been played up to time T ⋆.230

As indicated by Observation 3.3, row n
2 has non-zero entries at columns n

2 and n
2 + 1. Therefore, if231

the cumulative utilities R(T⋆)
n/2 at time T ⋆ is zero, this implies that neither of these columns has been232

chosen up to that point. By the same reasoning, column n
2 + 1 has a non-zero entry only at row n

2 ,233

indicating that this row has not been chosen as well.234

In order to continue, we require an estimate of the duration during which the strategy profile (n2 +1, n
2 )235

will be played. Observation 3.3 guarantees that the utility vector of the row player is the following.236

Aen
2
= (0, . . . , 0, 2n− 2︸ ︷︷ ︸

n
2

, 2n− 3︸ ︷︷ ︸
n
2 +1

, 0, . . . , 0) (3)
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Figure 2: This figure shows the spiral trajectory generated by the fictitious play dynamic in a game
with matrix A. The starting point is the lower-left element, and as the dynamic progresses, it visits all
non-zero elements in ascending order of value.

We can combine this information with the fact that R(T⋆)
n/2+1 ̸= 0, R(T⋆)

n/2 = 0, and that the respective237

entries in the payoff vector (3) of the row player differ by exactly one. This allows us to conclude that238

it will take at least R(T⋆)
n
2 +1 iterations for the cumulative utilities to become equal, i.e Rn

2 +1 = Rn
2

.239

Therefore, the lower bound on the number of iterations holds regardless of the tie-breaking rule.240

Now, if at any time T the agents play the strategy profile (i(T ), j(T )) = (n2 ,
n
2 + 1), we can conclude241

that T ≥ R
(T⋆)
n
2 +1. Using Equation (2) of Lemma 3.8 we obtain:242

T ≥ R
(T⋆)
n
2 −1 ≥ 16

n
2 −1

n
2 −1∏
ℓ=2

(ℓ− 1)

4

R
(T1)
n−1 ≥ Ω

(
4n
((n

2
− 2
)
!
)4)

243

Now that we have established the necessary technical result in Lemma 3.9, we are ready to present244

the proof of Theorem 3.1.245

Proof of Theorem 3.1. Let T ⋆ ≥ 1 denote the first time at which
(
i(t), j(t)

)
= (n2 ,

n
2 + 1). For any246

t ≤ T ⋆ − 1, it holds that x̂(t)
n
2

= ŷ
(t)
n
2 +1 = 0. Thus, Lemma 3.6 implies that (x̂(t), ŷ(t)) is not an247

approximate NE. On the other hand, at each round t ≥ T ⋆ we are ensured that x̂(t)
n
2
, ŷ

(t)
n
2 +1 converges248

to 1 with rate 1/t. Applying Lemma 3.6 for ϵ :=
√
ϵ we get that if (x̂(t), ŷ(t)) is an ϵ-NE then249

t ≥ T ⋆ + 1
n
√
ϵ
≥ Ω

(
4n((n/2− 2)!)4

)
+ 1

n
√
ϵ
. It is evident that, even with a uniformly random250

initialization, the probability of selecting (n, 1) as the starting point for fictitious play is 1/n2 and so251

the claim of the theorem follows.252

3.3 Strategy Switches and Proof of Lemma 3.8253

This subsection is dedicated to presenting the proof of Lemma 3.8. However, before delving into254

the proof, we first provide additional statements that serve to shed light on the sequence of strategy255

profiles generated by fictitious play.256

According to Proposition 3.5, if the strategy (i, j) is chosen by fictitious play, then either in row i257

or in column j, there is at most one element greater than Aij . Therefore, in a subsequent round,258

fictitious play will necessarily choose this element as its strategy. Let i′ be the row where the element259

of greater value is located. Intuitively, we can imagine that as fictitious play continues to play the260

same strategy (i, j), the payoff vector Aej is repeatedly added to the cumulative vector of the row261

player. Since this vector has a greater value at coordinate i′ than at coordinate i, a strategy switch will262

eventually occur. We state this observation in Proposition 3.10 and defer the proof to the Appendix.263

Proposition 3.10 (Strategy Switch). Let (i(t), j(t)) be a strategy selected by fictitious play at round264

t, and (i(t), j(t)) ̸= (n2 ,
n
2 ). Then, in a subsequent round, fictitious play will choose the strategy of265

greater value that is either on row i(t) or column j(t).266

As previously hinted, the structure of the payoff matrix dictates the sequence of strategy profiles267

chosen by fictitious play. The sequence of strategy switches alternates between rows and columns.268
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Figure 3: The figure illustrates the active row and column player for each time period, with the played
strategy highlighted in purple and the corresponding payoff vectors of the row and column player
highlighted in green. Additionally, the time period of each played strategy is indicated for clarity.

Continuing with the example from the previous paragraph, let us assume that the row player made269

the most recent strategy switch from (i, j) to (i′, j). This implies that the element Ai′j is greater than270

Aij , as otherwise a strategy switch would not have taken place, as established in Proposition 3.10.271

Moreover, by Proposition 3.5, we know that there must be an element of greater value in either row i′272

or column j. Since Ai′j is greater than Aij , any element of greater value must be located in row i′.273

The same reasoning applies for the case where the column player was the last to switch strategies. We274

can summarize this observation by stating that if one player is the last to switch, then the other player275

must switch next. We formally state this in Corollary 3.11 and defer the proof to the Appendix.276

Corollary 3.11 (Successive Strategy Switches). Let t be a round in which a player changes their277

strategy. Then exactly one of the following statements is true:278

1. If the row player changes their strategy at round t, i.e. i(t) ̸= i(t−1), then the column player279

can only make the next strategy switch.280

2. If the column player changes their strategy at round t, i.e. j(t) ̸= j(t−1), then the row player281

can only make the next strategy switch.282

Applying the same concept, we can observe that starting from the lower-left corner, fictitious play283

follows a spiral trajectory. The resulting spiral is illustrated in Figure 2. We now proceed with the284

main result of this section, Lemma 3.8.285

Proof. Since (i(1), j(1)) = (n, 1) all the above claims trivially for T0 = 1. We assume that the claim286

holds for i and will now establish it inductively for i+ 1.287

By the induction hypothesis, agents play strategies (n− i, i+ 1) at round T 0
i := Ti. Furthermore,288

row n− i admits cumulative utility of R(T 0
i )

n−i while row i+ 1 admits cumulative utility of R(T 0
i )

i+1 = 0.289

According to Observation 3.3, the payoff vectors of the row and column agent are highlighted in290

Figure 3a. By combining these facts, we can establish the following.291

Proposition 3.12 (Abridged; Full Version in Proposition B.3). There exists a round T 1
i > T 0

i at292

which the strategy profile is (i+ 1, i+ 1) for the first time, column i+ 1 admits cumulative utility293

C
(T 1

i )
i+1 ≥ (4i+ 1) · (R(T 0

i )
i+1 + 1), and C

(T 1
i )

n−i = 0.294

By Proposition 3.12, at round T 1
i , the agents play strategies (i+1, i+1). Furthermore, the cumulative295

utility of column n− i equals to C
(T 1

i )
n−i = 0. According to Observation 3.3, the payoff vectors of the296

row and column agent are highlighted Figure 3b. Combining these facts, we get the following:297

Proposition 3.13 (Abridged; Full Version in Proposition B.4). There exists a round T 2
i > T 1

i at298

which the strategy profile is (i + 1, n − i) for the first time, row i + 1 admits cumulative utility299

R
(T 2

i )
i+1 ≥ (4i+ 2) · C(T 1

i )
i+1 , and R

(T 2
i )

n−i−1 = 0.300

By Proposition 3.13, at round T 2
i , the agents play strategies (i+1, n−i). Furthermore, the cumulative301

utility of row n− i− 1 equals to R
(T 2

i )
n−i−1 = 0. According to Observation 3.3, the payoff vectors of302

the row and column agent are highlighted Figure 3c. By combining these facts, we get the following:303

Proposition 3.14 (Abridged; Full Version in Proposition B.5). There exists a round T 3
i > T 2

i at304

which the strategy profile is (n− (i+ 1), n− i) for the first time, R(T 3
i )

i+2 = 0.305
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(a) Table of transitions (b) Nash Gap (c) Empirical strategy of x player

Figure 4: The figure displays the three aspects that were analyzed in the experiments. To preserve the
crucial qualitative features in both diagrams, the x-axis was set to a logarithmic scale.

By Proposition 3.14, at round T 3
i , the agents play strategies (n − i − 1, n − i). the cumulative of306

column i+ 2 equals to R
(T 3

i )
i+2 = 0. According to Observation 3.3, the payoff vectors of the row and307

column agent are highlighted Figure 3d. By combining these facts, we can establish the following.308

Proposition 3.15 (Abridged; Full Version in Proposition B.6). There exists a round T 4
i > T 3

i at309

which the strategy profile is (n−(i+1), (i+1)+1) for the first time, row n− i−1 admits cumulative310

utility R
(T 4

i )

n−(i+1) ≥ (4i + 4) · C(T 3
i )

n−i , all rows k ∈ [(i + 1) + 1, n − (i + 1) − 1] admit R(T 4
i )

k = 0311

and all columns k ∈ [(i+ 1) + 2, n− (i+ 1)] admit C(T 4
i )

k = 0.312

Proposition 3.15 establishes that there exits a round Ti+1 := T 4
i at which the strategy profile313

(n− (i+ 1), (i+ 1) + 1) is played for the first time. Furthermore, Proposition 3.15 confirms that all314

rows k ∈ {(i+1)+1, n−(i+1)−1} admit R(Ti+1)
k = 0 and all columns k ∈ {(i+1)+2, n−(i+1)}315

admit C(Ti+1)
k = 0. We still need to verify the the recursive relation Equation (2). By combining316

Proposition 3.12, 3.13, 3.14 and 3.15, we can deduce317

R
(Ti+1)
n−i−1 ≥ (4i+ 4)(4i+ 3)(4i+ 2)(4i+ 1)R

(Ti)
n−i.

318

4 Experiments319

In this section, we aim to experimentally validate our findings on a 4 × 4 payoff matrix. Our320

analysis focuses on three key aspects: the round in which a new strategy switch occurs, the Nash gap321

throughout the game, and the empirical strategy employed by the x player. We present the plot from322

the row player’s perspective, which is identical to that of the column player.323

In Figure 4a, we provide the time steps of all strategy switches. As it is expected from the analysis,324

fictitious play visits all strategies, specifically in increasing order of their utility, to reach the pure325

Nash equilibrium. Moreover, in Figure 4b we observe a recurring pattern in the Nash gap diagram,326

where the gap increases after the selection of a new strategy with a higher utility and decreases until327

the next strategy switch. However, this pattern stops after the pure Nash equilibrium is reached,328

which is the unique approximate Nash equilibrium in accordance with Lemma 3.8.329

5 Conclusion330

In summary, this paper has provided a thorough examination of the convergence rate of fictitious play331

within a specific subset of potential games. Our research has yielded a recursive rule for constructing332

payoff matrices, demonstrating that fictitious play, regardless of the tie-breaking rule employed, may333

require super exponential time to reach a Nash equilibrium even in two-player identical payoff games.334

This contribution to the literature differs from previous studies and sheds new light on the limitations335

of fictitious play in the particular class of potential games.336

Limitations and Broader Impacts: Our work is of theoretical nature and we do not see any337

limitations or negative ethical, societal implication.338
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