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Abstract

The predominant paradigm in evolutionary game theory and
more generally online learning in games is based on a clear dis-
tinction between a population of dynamic agents that interact
given a fixed, static game. In this paper, we move away from
the artificial divide between dynamic agents and static games,
to introduce and analyze a large class of competitive settings
where both the agents and the games they play evolve strate-
gically over time. We focus on arguably the most archetypal
game-theoretic setting—zero-sum games (as well as network
generalizations)—and the most studied evolutionary learning
dynamic—replicator, the continuous-time analogue of multi-
plicative weights. Populations of agents compete against each
other in a zero-sum competition that itself evolves adversar-
ially to the current population mixture. Remarkably, despite
the chaotic coevolution of agents and games, we prove that
the system exhibits a number of regularities. First, the system
has conservation laws of an information-theoretic flavor that
couple the behavior of all agents and games. Secondly, the
system is Poincaré recurrent, with effectively all possible ini-
tializations of agents and games lying on recurrent orbits that
come arbitrarily close to their initial conditions infinitely often.
Thirdly, the time-average agent behavior and utility converge
to the Nash equilibrium values of the time-average game. Fi-
nally, we provide a polynomial time algorithm to efficiently
predict this time-average behavior for any such coevolving
network game.

1 Introduction
The problem of analyzing evolutionary learning dynamics in
games is of fundamental importance in several fields such as
evolutionary game theory (Sandholm 2010), online learning
in games (Cesa-Bianchi and Lugosi 2006; Nisan et al. 2007),
and multi-agent systems (Shoham and Leyton-Brown 2008).
The dominant paradigm in each area is that of evolutionary
agents adapting to each others behavior. In other words, the
dynamism of the environment of each agent is driven by the
other agents, whereas the rules of interaction between the
agents, that is, the game, is static. This separation between
evolving agents and a static game is so standard that it typi-
cally goes unnoticed, however, this fundamental restriction
does not allow us to capture many applications of interest. In
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(a) Population y evolution (b) Environment w evolution

(c) Coevolution of y and w

Figure 1: Poincaré recurrence in a time-evolving generalized
Rock-Paper-Scissors model.

artificial intelligence (Wang et al. 2019; Garciarena, Santana,
and Mendiburu 2018; Costa et al. 2019; Miikkulainen et al.
2019; Wu et al. 2019; Stanley and Miikkulainen 2002) as well
as biology, sociology, and economics (Stewart and Plotkin
2014; Tilman, Plotkin, and Akçay 2020; Tilman, Watson,
and Levin 2017; Bowles, Choi, and Hopfensitz 2003; Weitz
et al. 2016), the rules of interaction can themselves adapt to
the collective history of the agent behavior. For example, in
adversarial learning and curriculum learning (Huang et al.
2011; Bengio et al. 2009), the difficulty of the game can in-
crease over time by exactly focusing on the settings where
the agent has performed the weakest. Similarly, in biology
or economics, if a particular advantageous strategy is used
exhaustively by agents, then its relative advantages typically
dissipate over time (negative frequency-dependent selection,
see Heino, Metz, and Kaitala 1998), which once again drives
the need for innovation and exploration.

In all these cases, the game itself stops being a passive
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object that the agents act upon, but instead is best thought of
as an algorithm itself. Similar to online learning algorithms
employed by agents, the game itself may have a memory/state
that encodes history. However, unlike online learning algo-
rithms that receive a history or sequence of payoff vectors and
output the current behavior (e.g., a probability distribution
over actions), an algorithmic game receives as input a history
or sequence of agents’ behavior and outputs a new payoff
matrix. Hence, learning and games are “dual" algorithmic
objects which are coupled in their evolution (Figure 1).

How does one even hope to analyze evolutionary learning
in time-evolving games? Once we move away from the safe
haven of static games, we lose our prized standard methodol-
ogy that roughly consists of two steps: i) compute/understand
the equilibria of the given game (e.g., Nash, correlated, etc.;
see Nash 1951; Aumann 1974) and their properties; ii) con-
nect the behavior of learning dynamics to a target class of
equilibria (e.g., convergence). Indeed, the only prior work to
ours, namely by Mai et al. (2018), which considers games
larger than 2×2, focused on a specific payoff matrix structure
based on Rock-Paper-Scissors (RPS) and argued recurrent be-
havior via a tailored argument that was explicitly designed for
the dynamical system in question with no clear connections
to game theory. We revisit this problem and find a new sys-
tematic game-theoretic analysis that generalizes to arbitrary
network zero-sum games.

Contributions. We provide a general framework for ana-
lyzing learning agents in time-evolving zero-sum games as
well as rescaled network generalizations thereof. To begin, we
develop a novel reduction that takes as input time-evolving
games and reduces them to a game-theoretic graph that gen-
eralizes both graphical zero-sum games and evolutionary
zero-sum games. In this generalized but static game, evolving
agents and evolving games represent different types of nodes
(nodes with and without self-loops) in a graph connected
by edge games. The bridge we form between time-evolving
games and static network games makes the latter far more
interesting than previously thought: our reduction proves
they are sufficiently expressive to capture not only multiple
pairwise interactions, but time-varying environments as well.
Moreover, by providing a path back to the familiar territory of
evolving agents interacting in a static game, the mathematical
tools of game theory and dynamical systems theory become
available. This allows us to perform a general algorithmic
analysis of commonly studied systems from machine learning
and biology previously requiring individualized treatment.

From an algorithmic learning perspective, we focus on the
most studied evolutionary learning dynamic: replicator, the
continuous-time analogue of the multiplicative weights up-
date. Remarkably, despite the chaotic coevolution of agents
and games that forces agents to continually innovate, the
system can be shown to exhibit a number of regularities. We
prove the system is Poincaré recurrent, with effectively all
initializations of agents and games lying on recurrent orbits
that come arbitrarily close to their initial conditions infinitely
often (Figure 1). As a crucial component of this result, we
demonstrate the dynamics obey information-theoretic conser-
vation laws that couple the behavior of all agents and games

(Figure 3). Moreover, while the system never equilibrates,
the conservation laws allow us to prove the time-average be-
havior and utility of the agents converge to the time-average
Nash of their evolving games with bounded regret. Finally,
we provide a polynomial time algorithm that predicts these
time-average quantities. Some proofs along with further ex-
periments have been moved to an accompanying technical
report (Skoulakis et al. 2020) due to space constraints.

Related Work and Technical Novelty. Our work relates
with the rich previous literature studying the emerging recur-
rent behavior of replicator dynamics in (network) zero-sum
games (Piliouras et al. 2014; Piliouras and Shamma 2014;
Boone and Piliouras 2019; Mertikopoulos, Papadimitriou,
and Piliouras 2018; Nagarajan, Balduzzi, and Piliouras 2020;
Perolat et al. 2020). Unfortunately, this proof technique is
an immediate dead-end for time-evolving zero-sum games
since the KL divergence between the (evolving) strategies
and (evolving) Nash equilibrium need not be a constant of
motion. In particular, it is not even clear what the static con-
cept of a Nash equilibrium means in this context. Despite
this fact, Mai et al. (2018) managed to prove recurrence via
constructing an invariant function for a specific evolving
RPS game. However, their invariant function relies on the
symmetries of the game and has no deeper interpretation or
obvious generalization. A key contribution of our work is the
development of a novel characterization of a general class of
time-evolving games that possess a number of regularities
including recurrence, which we demonstrate by deriving an
information theoretic invariant. In particular, this allows us
to not only generalize the recurrence results of time-evolving
games to a class with much richer and complex interactions
than the one studied in Mai et al. (2018), but also provides a
naturally interpretable invariant in such time-evolving games.

2 Preliminaries and Definitions
In this section, we formalize the concept of polymatrix games,
define the replicator dynamics for this class of games, and
provide background material on dynamical systems that is
relevant to our results.

Polymatrix Games. An N -player polymatrix game is de-
fined using an undirected graph G = (V,E) where V
corresponds to the set of agents (or players) and E cor-
responds to the set of edges between agents in which a
bimatrix game is played between the endpoints (Cai and
Daskalakis 2011). Each agent i ∈ V has a set of actions
Ai = {1, . . . , ni} that can be selected at random from a
distribution xi called a mixed strategy. The set of mixed
strategies of player i ∈ V is the standard simplex in Rni and
is denoted Xi = ∆ni−1 = {xi ∈ Rni≥0 :

∑
α∈Ai xiα = 1}

where xiα denotes the probability mass on action α ∈ Ai.
The state of the game is then defined by the concatenation
of the strategies of all players. We call the set of all possi-
ble strategies profiles the strategy space, and denote it by
X =

∏
i∈V Xi.

The bimatrix game on edge (i, j) is described using a pair
of matrices Aij ∈ Rni×nj and Aji ∈ Rnj×ni . An entry
Aijαβ for (α, β) ∈ Ai × Aj represents the reward player i
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obtains for selecting action α given that player j chooses
action β. We note that the graph G may also contain self-
loops, meaning that an agent i ∈ V plays a game defined
by Aii against itself. The utility or payoff of agent i ∈ V
under the strategy profile x ∈ X is denoted by ui(x) and
corresponds to the sum of payoffs from the bimatrix games
the agent participates in. The payoff is equivalently expressed
as ui(xi, x−i) when distinguishing between the strategy of
player i and all other players −i. More precisely,

ui(x) =
∑
j:(i,j)∈E x

>
i A

ijxj . (1)

We further denote by uiα(x) =
∑
j:(i,j)∈E(Aijxj)α the

utility of player i ∈ V under the strategy profile x =
(α, x−i) ∈ X for α ∈ Ai. The game is called zero-sum
if
∑
i∈V ui(x) = 0 for all x ∈ X . Moreover, if there are

positive coefficients {ηi}i∈V such that
∑
i∈V ηiui(x) = 0

for all x ∈ X and the self-loops are antisymmetric (meaning
Aii = −(Aii)>), the game is called rescaled zero-sum.

A common notion of equilibrium behavior in game theory
is that of a Nash equilibrium, which is defined as a mixed
strategy profile x∗ ∈ X such that for each player i ∈ V ,

ui(x
∗
i , x
∗
−i) ≥ ui(xi, x∗−i), ∀xi ∈ Xi. (2)

We denote the support of x∗i ∈ Xi by supp(x∗i ) = {α ∈ Ai :
xiα > 0}. A Nash equilibrium is said to be an interior or
fully mixed Nash equilibrium if supp(x∗i ) = Ai ∀i ∈ V .

Replicator Dynamics. In polymatrix games, replicator dy-
namics (Sandholm 2010) for each i ∈ V are given by

ẋiα = xiα(uiα(x)− ui(x)), ∀α ∈ Ai. (3)

We suppress the explicit dependence on time t in the system
and do so throughout where clear from context to simplify
notation. Moreover, we consider initial conditions on the inte-
rior of the simplex. The replicator dynamics are equivalently
given in vector form for each i ∈ V by the system

ẋi = xi ·
(∑

j:(i,j)∈E A
ijxj −

(∑
j:(i,j)∈E x

>
i A

ijxj
)
· 1
)
,

(4)
where 1 is an ni–dimensional vector of ones and the operator
(·) denotes elementwise multiplication.

For the purpose of analysis, the replicator dynamics in (3)
are often translated by a diffeomorphism from the interior of
X to the cumulative payoff space C =

∏
i∈V Rni−1, which

is defined by a mapping such that xi = (xi1, . . . , xini) 7→
(ln xi2

xi1
, . . . , ln

xini
xi1

) for each player i ∈ V .

Review of Topology of Dynamical Systems. We now re-
view some concepts from dynamical systems theory that will
help us prove Poincaré recurrence. Further background mate-
rial can be found in the book of Alongi and Nelson (2007).

Flows: Consider a differential equation ẋ = f(x) on a
topological space X . The existence and uniqueness theorem
for ordinary differential equations guarantees that there exists
a unique continuous function φ : R × X → X , which is
termed the flow, that satisfies (i) φ(t, ·) : X → X—often
denoted φt : X → X—is a homeomorphism for each t ∈ R,
(ii) φ(t+s, x) = φ(t, φ(s, x)) for all t, s ∈ R and all x ∈ X ,
and (iii) for each x ∈ X , d

dt |t=0φ(t, x) = f(x). Since the

replicator dynamics are Lipschitz continuous, a unique flow
φ of the replicator dynamics exists.

Conservation of Volume: The flow φ of a system of ordi-
nary differential equations is called volume preserving if the
volume of the image of any set U ⊆ Rd under φt is preserved.
More precisely, for any set U ⊆ Rd, vol(φt(U)) = vol(U).
Whether or not a flow preserves volume can be determined
by applying Liouville’s theorem, which says the flow is vol-
ume preserving if and only if the divergence of f at any
point x ∈ Rd equals zero—that is, divf(x) = tr(Df(x)) =∑d
i=1

df(x)
dxi

= 0.

Poincaré Recurrence: If a dynamical system preserves
volume and every orbit remains bounded, almost all trajecto-
ries return arbitrarily close to their initial position, and do so
infinitely often (Poincaré 1890). Given a flow φt on a topo-
logical space X , a point x ∈ X is nonwandering for φt if for
each open neighborhood U containing x, there exists T > 1
such that U ∩φT (U) 6= ∅. The set of all nonwandering points
for φt, called the nonwandering set, is denoted Ω(φt).

Theorem 2.1 (Poincaré Recurrence (Poincaré 1890)). If a
flow preserves volume and has only bounded orbits, then for
each open set almost all orbits intersecting the set intersect
it infinitely often: if φt is a volume preserving flow on a
bounded set Z ⊂ Rd, then Ω(φt) = Z.

3 Studying Doubly Evolutionary Processes
via Polymatrix Games

Numerous applications from artificial intelligence (AI)
and machine learning (ML) to biology cast competition
between populations (e.g., neural networks/algorithms or
species/agents) and the environment (e.g., hyperparame-
ters/network configurations or resources) as a time-evolving
dynamical system. The basic abstraction takes the form of
a population y of species which evolve dynamically in time
as a function of itself and some environment parameters w
whose evolution, in turn, depends on y. We now review mod-
els from each application and then connect a broad class of
time-evolving dynamical systems to static polymatrix games.
This reduction provides a path toward analyzing complex
non-stationary dynamics using tools developed for the typi-
cal static game formulation.

Doubly Evolutionary Behavior in AI and ML. Evolu-
tionary game theory methods for training generative adver-
sarial networks commonly exhibit time-evolving dynamic
behavior and there is a pair of predominant doubly evolu-
tionary process models (Costa et al. 2020; Wang et al. 2019;
Garciarena, Santana, and Mendiburu 2018; Costa et al. 2019;
Miikkulainen et al. 2019). In the first formulation, Wang et al.
(2019) describe training the generator network, with parame-
ters y, via a gradient-based algorithm composed of variation,
evaluation, and selection. The discriminator network, with
parameters w updated via gradient-based learning, is mod-
eled as the environment operating in a feedback loop with
y. The second model is such that the generator and discrimi-
nator are different species (or modules) in the population y
which follows evolutionary dynamics, and network hyperpa-
rameters (or chromosomes) w evolve in time as a function
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of y (Garciarena, Santana, and Mendiburu 2018; Costa et al.
2019; Miikkulainen et al. 2019). We connect further to AI
and ML applications in the discussion where we highlight
exciting future directions (Section 7).

Doubly Evolutionary Behavior in Biology. There are
also two common formulations emerging in biology. In the
first, the focus is on the level of coordination in a popu-
lation as a function of evolving environmental variables.
The prevailing model is comprised of replicator dynamics
ẏ = y(1 − y)((A(w)y)1 − (A(w)y)2) in which a popula-
tion of two species y plays a prisoner’s dilemma (PD) game
against themselves in a setting where the payoff matrix A(w)
depends on an environment variable w which, in turn, de-
pends on the population via ẇ = w(1−w)G(y) where G(y)
is a feedback mechanism describing when environmental
degradation or enhancement occurs as a function of y (Weitz
et al. 2016; Tilman, Plotkin, and Akçay 2020; Tilman, Wat-
son, and Levin 2017; Lade et al. 2013); e.g., in Weitz et al.
(2016), G(y) takes the form θy − (1 − y) for some θ > 0
which represents the ratio of the enhancement rate to degrada-
tion rate of ‘cooperators’ and ‘defectors’ in the time-evolving
PD game. In the second formulation, the focus is on studying
how competition among species is modulated by resource
availability. Indeed, from a biological perspective, Mai et al.
(2018) argue that the environment parameters w on which a
population y of n antagonistic species depend are not con-
stant, but rather evolve over time. Since the species fitness
depends on the environment, the game among the species is
also time-varying. The adopted model of the dynamic behav-
ior with initial conditions on the interior of the simplex for
both w and y is given for each i ∈ {1, . . . , n} by

ẇi = wi
∑n
j=1 wj(yj − yi)

ẏi = yi
(
(P (w)y)i − y>P (w)y

) (5)

where P (w) = P + µW for µ > 0 with P defined as the
generalized RPS payoff matrix

P =


0 −1 0 · · · 0 0 1
1 0 −1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1 0 −1
−1 0 0 · · · 0 1 0

 ,

and the environmental variations matrix

W =


0 w1 − w2 · · · w1 − wn

w2 − w1 0 · · · w2 − wn
...

...
...

...
wn − w1 wn − w2 · · · 0

 .

Reducing Time-Evolving RPS to a Polymatrix Game.
Mai et al. (2018) studied the dynamical system in (5) and
showed it exhibits a special type of cyclic behavior: Poincaré
recurrence. By capturing the evolution of the environment
(dynamics of the payoff matrix) as additional players that dy-
namically change their strategies, we reduce the coevolution
of w and y to a static polymatrix game of greater dimen-
sionality (greater number of players). Given this reduction,

Theorem 4.1, which establishes the Poincaré recurrence of
replicator dynamics in rescaled zero-sum polymatrix games,
immediately captures the results of Mai et al. (2018) (see
Corollary 4.1).
Proposition 3.1. The time-evolving generalized rock-paper-
scissors game from (5) is equivalent to replicator dynamics
in a two-player rescaled zero-sum polymatrix game.

Proof Sketch. The initial condition w(0) is on the interior of
the simplex and

∑n
i=1 ẇi = 0. Consequently,

∑n
i=1 wi(0) =∑n

i=1 wi(t) = 1, and we obtain

ẇi = wi
∑n
j=1 wj(yj − yi) = wi

(
− yi +

∑n
j=1 wjyj

)
,

which is the replicator equation of a node w in a polyma-
trix game with payoff matrix Awy = −I . Using a similar
decomposition, we reformulate the y dynamics:

ẏi = yi
(
(Py)i − y>Py

)
+ yi

(
µwi − µ

∑n
j=1 wjyj

)
.

This corresponds to the replicator equation of node y playing
against itself with Ayy = P and against w with Ayw = µI .
The game is rescaled zero-sum with ηy = 1 and ηw = µ.

Generalized Reduction. The previous reduction general-
izes to a class of time-evolving games defined by a set
of populations y = (y1, . . . , yny ) and environments w =

(w1, . . . , wnw), where y` ∈ ∆n−1 for each ` ∈ {1, . . . , ny}
and wk ∈ ∆n−1 for each k ∈ {1, . . . , nw}. Environments
coevolve with only populations and not other environments,
while any population coevolves only with environments and
itself. Let Nw

k be the set of populations which coevolve with
wk and N y

` be the set of environments which coevolve with
y`. The time-evolving dynamics for each environment k and
population ` are given componentwise by

ẇk,i = wk,i
∑
`∈Nwk

∑
j

wk,j
(
(Ak,`y`)i − (Ak,`y`)j

)
, (6)

ẏ`,i = y`,i
(
(P`(w)y`)i − y>` P`(w)y`

)
, (7)

where P`(w) = P` +
∑
k∈Ny`

W `,k with P` ∈ Rn×n and
W `,k ∈ Rn×n is defined such that the (i, j)–th entry is
(A`,kwk)i − (A`,kwk)j .

Despite the complex nature of this dynamical system, we
can show that it is equivalent to replicator dynamics in a
polymatrix game.
Theorem 3.1. Any time-evolving system defined by the dy-
namics in (6-7) is equivalent to replicator dynamics in a
polymatrix game.

The expressive power we gain from this reduction permits
us to efficiently describe and characterize coevolutionary pro-
cesses of higher complexity than past work since we can
return to the familiar territory of analyzing dynamic agents
in static games. In what follows we focus on providing the-
oretical results for the subclass of time-evolving systems
which reduce to a rescaled zero-sum game. However, this
reduction is of independent interest since it can prove useful
for future work analyzing the class of general-sum games
after the behavior of network zero-sum games and rescaled
generalizations are well understood.
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4 Poincaré Recurrence
In this section, we show that the replicator dynamics are
Poincaré recurrent in N -player rescaled zero-sum polymatrix
games with interior Nash equilibria. In particular, for almost
all initial conditions x(0) ∈ X , the replicator dynamics will
return arbitrarily close to x(0) an infinite number of times.
Theorem 4.1. The replicator dynamics given in (3) are
Poincaré recurrent in any N -player rescaled zero-sum poly-
matrix game that has an interior Nash equilibrium.

Boone and Piliouras (2019), the closest known result,
prove replicator dynamics are Poincaré recurrent in N -
player pairwise zero-sum polymatrix games with an interior
Nash equilibria, which requires Aij = −(Aji)> for every
(i, j) ∈ E. Our extension to N -player rescaled zero-sum
polymatrix games is a far more general characterization of
the Poincaré recurrence of replicator dynamics since there
are no explicit restrictions on the edge games and the poly-
matrix game itself need not even be strictly zero-sum. The
significance of this result is further enhanced by the connec-
tion developed in Section 3 between a class of time-evolving
games and N -player rescaled zero-sum polymatrix games.
As a concrete example, given the reduction of Proposition 3.1,
Theorem 4.1 recovers the work of Mai et al. (2018).
Corollary 4.1. The time-evolving generalized rock-paper-
scissors game in (5) is Poincaré recurrent.

It is worth noting that the technical results we prove in or-
der to show the system is Poincaré recurrent, namely volume
preservation and the bounded orbits property, are themselves
independently important as they provide conservation laws
that couple the behavior of agents. In fact, they are funda-
mental to showing that while the system never equilibrates,
the time-average dynamics and utility converge to the Nash
equilibrium and its utility.

Overview of Proof Methods. To prove Poincaré recur-
rence, we need to show the flow corresponding to the system
of ordinary differential equations in (3) is volume preserv-
ing and has bounded orbits (cf. Theorem 2.1). Notice that
the flow of (3) always has bounded orbits since xiα ≥ 0
and

∑
α∈Ai xiα(t) = 1 ∀ i ∈ V , however proving the

volume preserving property is not as straightforward. To
show volume preservation, we transform the dynamics via
a canonical transformation. Indeed, we prove Poincaré re-
currence of the flow of a system of ordinary differential
equations that is diffeomorphic to the flow of the replicator
equation. Given x ∈ X , consider the transformed variable
z ∈ Rn1+···+nN−N defined by

zi =
(

ln xi2
xi1
, . . . , ln

xini
xi1

)
, ∀i ∈ V. (8)

Given the vector zi, the components of xi are given by xiα =
eziα/(

∑ni
`=1 e

zi`). Under this transformation, ż = F (z) is
given componentwise for each α ∈ Ai and all i ∈ V by

żiα = Fiα(z) =
ẋiα
xiα
− ẋi1
xi1

=
∑
j∈V

∑
β∈Aj (A

ij
αβ −A

ij
1β)ezjβ/

∑nj
`=1 e

zj` . (9)

Observe that Fi1 = 0, meaning zi1 = 0 for all time. To show
Poincaré recurrence of (3), we prove two key properties: (i)

the flow of ż is volume preserving, meaning the trace Jaco-
bian of the respective vector field ż = F (z) is zero, and, (ii)
ż has bounded orbits from any interior initial condition. Then,
the Poincaré recurrence of ż, and consequently ẋ, follows
from Theorem 2.1.

Conservation of Volume. We show that the trace of the
vector field F (z) is zero, which then from Liouville’s theo-
rem guarantees ż, as defined in (9), is volume preserving.

Lemma 4.1. For anyN -player rescaled zero-sum polymatrix
game, tr(DF (z)) =

∑
i∈V

∑
α∈Ai

d
dziα

Fiα(z) = 0.

The proof of Lemma 4.1 crucially relies on the fact the
self-loops are antisymmetric, (Aii)> = −Aii.

Bounded Orbits. In order to prove that the orbits from any
initial interior point z(0) are bounded, we show that for any
initial interior point x(0), the orbit produced by the replicator
dynamics stays on the interior of the simplex, that is, there
exists a fixed parameter ε > 0 such that for any agent i ∈ V
and strategy α ∈ Ai, ε ≤ xiα ≤ 1− ε. Then, |ziα| is clearly
bounded since ziα = ln(xiα/x1α).

Lemma 4.2. Consider an N -player rescaled zero-sum
polymatrix game such that for positive coefficients
{ηi}i∈V ,

∑
i∈V ηiui(x) = 0 for x ∈ X . If the

game admits an interior Nash Equilibrium x∗, then
Φ(t) =

∑
i∈V

∑
α∈Ai ηix

∗
iα lnxiα is time-invariant, mean-

ing Φ(t) = Φ(0) for t ≥ 0. Hence, orbits from any interior
initial condition x(0) remain on the interior of the simplex.

From the preceding discussion, Lemma 4.2 guarantees
orbits from any interior initial condition z(0) remain bounded.
The proof of Lemma 4.2 is the primary novelty in the proof
of Theorem 4.1 and the techniques may be of independent
interest. To show Φ(t) is time-invariant, we prove that the
time derivative of the function is equal to zero. From the
given form of the replicator dynamics and the rescaled zero-
sum property of the polymatrix game, we obtain Φ̇(t) =∑
i∈V

∑
j:(i,j)∈E ηi(x

∗
i )
>Aij(xj − x∗j ) nearly immediately,

where the sum over edges describes how the rescaled utility
of agent i ∈ V changes at her equilibrium strategy when the
rest of the players are allowed to deviate. To continue, we
draw a key connection to a fascinating result regarding the
payoff structure of zero-sum polymatrix games.

Cai and Daskalakis (2011) proved there exists a payoff pre-
serving transformation from any zero-sum polymatrix game
to a pairwise constant-sum polymatrix game. We translate
this result to rescaled zero-sum polymatrix games. The pri-
mary implication is that the change in player i’s rescaled util-
ity at equilibrium when all other players connected to i devi-
ate is equal to the change in player j’s rescaled utility from de-
viating while all other players connected to j remain in equi-
librium. This is a direct consequence of the fact that the game
is equivalent to a pairwise constant-sum game. Explicitly, we
prove that Φ̇(t) =

∑
j∈V

∑
i:(j,i)∈E ηj(x

∗
j−xj)>Ajix∗i and

conclude Φ̇(t) = 0 since x∗ is an interior Nash equilibrium,
which means ujα(x∗) = uj(x

∗) for α ∈ Aj and any linear
combination.
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Proof of Theorem 4.1. The proof follows directly from
Lemma 4.1, Lemma 4.2, and Theorem 2.1. Indeed, the dy-
namics in (9) are Poincaré recurrent since from Lemma 4.1
they are volume preserving and from Lemma 4.2 the orbits
are bounded. This property in the cumulative payoff space
carries over to the dynamics in the strategy space from (3)
since the transformation is a diffeomorphism.

5 Time-Average Behavior, Equilibrium
Computation, & Bounded Regret

In this section, we transition away from analyzing the dy-
namic behavior of replicator dynamics and focus on charac-
terizing the long-term behavior along with its connections to
notions of equilibrium and regret. We prove that the enduring
system behavior is guaranteed to satisfy a number of desir-
able game-theoretic metrics of consistency and optimality.
Moreover, we design a polynomial time algorithm able to
predict this behavior.

While the replicator dynamics exhibit complex dynamics
and never equilibriate in rescaled zero-sum polymatrix games
with interior Nash equilibrium, the time-average behavior of
the dynamics is closely tied to the equilibrium. The follow-
ing result shows that given the existence of a unique interior
Nash equilibrium, the time-average of the replicator dynam-
ics converges to the equilibrium and the time-average utility
converges to the utility at the equilibrium.

Theorem 5.1. Consider anN -player rescaled zero-sum poly-
matrix game that admits a unique interior Nash equilibrium
x∗. The trajectory x(t) produced by replicator dynamics
given in (3) is such that i) limt→∞

1
t

∫ t
0
x(τ)dτ = x∗ and ii)

limt→∞
1
t

∫ t
0
ui(x(τ))dτ = ui(x

∗).

The preceding result provides a broad generalization of
past results that show the time-average of replicator dynamics
converges to the unique interior Nash equilibrium in zero-
sum bimatrix games (Hofbauer, Sorin, and Viossat 2009). We
remark that our proof crucially relies on Lemma 4.2 since the
trajectory of the dynamics must remain on the interior of the
simplex to guarantee there exists a bounded sequence which
admits a subsequence that converges to a limit corresponding
to the time-average.

We now provide a polynomial time algorithm that effi-
ciently predicts the time-average quantities even for an arbi-
trary networks of players. Linear programming formulations
for computing and characterizing the set of Nash equilibria
for zero-sum polymatrix games are known (Cai et al. 2016).
The following result extends this formulation to rescaled
zero-sum polymatrix games.

Theorem 5.2. Consider an N -player rescaled zero-sum
polymatrix game such that for positive coefficients {ηi}i∈V ,∑N
i=1 ηiui(x) = 0 for x ∈ X . The optimal solution of the

following linear program is a Nash equilibrium of the game:

minx∈X {
∑n
i=1 ηivi| vi ≥ uiα(x), ∀ i ∈ V, ∀ α ∈ Ai}

It cannot be universally expected that an interior equi-
librium exists or that players are fully rational and obey a

common learning rule. Similarly, players may not always be
able to determine an equilibrium strategy a priori depending
on the information available. This motivates an evaluation of
the trajectory of a player who is oblivious to opponent behav-
ior. We consider a notion of regret for a player. That is, the
time-averaged utility difference between the mixed strategies
selected along the learning path t ≥ 0 and the fixed strategy
that maximizes the utility in hindsight. Even in polymatrix
games (with self-loops), the regret of replicator dynamics
stays bounded.
Proposition 5.1. Any player following the replicator dynam-
ics (3) in an N -player polymatrix game (with self-loops)
achieves an O(1/t) regret bound independent of the rest of
the players. Formally, for every trajectory x−i(t), the regret
of player i ∈ V is bounded as follows for a player-dependent
positive constant Ωi,

Regi(t) := max
y∈Xi

1

t

∫ t

0

[ui(y, x−i(s))− ui(x(s))] ds ≤ Ωi
t
.

The proof mirrors closely more general arguments by Mer-
tikopoulos, Papadimitriou, and Piliouras (2018).

6 Simulations
The goal of this section is to experimentally verify some of
the key results, and to highlight other empirically observed
properties outside the established theoretical results.1

Theorem 4.1 states that any population/environment dy-
namics which can be captured via a rescaled zero-sum game
(no matter the complexity of such a description) exhibit a type
of cyclic behavior known as Poincaré recurrence. Indeed, the
trajectories shown in Figure 1 from the time-evolving general-
ized RPS game of Section 3 are cyclic in nature. Specifically,
Figure 1c shows the coevolution of the system for a fixed
initial condition. We plot the joint trajectory of the first two
strategies for both the population y and environmentw, which
creates a 4D space where the color legend acts as the final
dimension. The simulation demonstrates that as the initial
conditions move closer to the interior equilibrium, the trajec-
tories themselves remain bounded within a smaller region
around the equilibrium, which confirms the bounded regret
property of the dynamics from Proposition 5.1.

Lemma 4.2 shows that for any rescaled zero-sum game
there is a constant of motion, namely Φ(t). It is easy to
see from the definition of Φ(t) that a weighted sum of KL-
divergences between the strategy vectors produced by repli-
cator dynamics and an interior Nash Equilibrium is also a
constant of motion. We simulated an extension to the game
depicted in Figure 2 in which many ‘butterfly’ clusters are
joined in a toroid shape. Figure 3 depicts our claim: although
each agent specific divergence term ηiKL(x∗i ||xi(t)) fluctu-
ates, the weighted sum

∑
i∈V ηiKL(x∗i ||xi(t)) is constant.

To generate Figure 4, we scale-up the game structure
from Mai et al. (2018) to 64 nodes. This is a relatively dense
graph, where the initial condition of each player informs the
RGB value of a corresponding pixel on a grid. If the sys-
tem exhibits Poincaré recurrence, we should eventually see

1Code is available at github.com/ryanndelion/egt-squared
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Figure 2: Two clusters of nodes that join together to form
a ‘butterfly’ structure. Self-loops represent RPS self-play
games, while edges between nodes represent (I,−I). The
red nodes denote a population of species, while the blue
nodes stand for an environment.

Figure 3: Weighted KL divergence for 25 cluster (100 player)
time-evolving zero-sum game.

similar patterns emerge as the pixels change color over time
(i.e., as their corresponding strategies evolve). In general, an
upper bound on the expected time to see recurrence in such a
system is exponential in the number of agents. As observed
in Figure 4, the system returns near the initial image in the
first several hundred iterations, but takes more than 100k
iterations for a clearer Pikachu to reappear.

7 Discussion
We show that systems in which populations of dynamic
agents interact with environments that evolve as a function of
the agents themselves can equivalently be modeled as poly-
matrix games. For the class of rescaled zero-sum games, we
prove replicator dynamics are Poincaré recurrent and con-
verge in time-average to equilibrium, while experiments show
the complexity of these systems. An interesting direction for
future research is the study of games dynamics when the
games evolve exogenously, instead of only endogenously.

Moreover, there are several exciting applications where
our theory has relevance. Google DeepMind trains popula-
tions of artificial intelligence agents against each other and
computes win probabilities in heads-up competition resulting
in a symmetric constant-sum game (Czarnecki et al. 2020;
Balduzzi et al. 2019). Up to a shift by an all 0.5 matrix,
these are exactly anti-symmetric self-loop games connecting
a population of users (programs) to itself as the programs are
trying to out-compete each other. The game always remains
(anti)-symmetric, but the payoff entries change as stronger

(a) T=1 (b) T=3 (c) T=5 (d) T=20

(e) T=47 (f) T=54 (g) T=68 (h) T=93

(i) T=99 (j) T=112 (k) T=117 (l) T=101701

Figure 4: Sequence of Pikachu images showing approximate
recurrence in an 8 × 8 zero-sum polymatrix game, where
the changing color of each pixel on the grid represents the
strategy of the player over time.

agents replace old agents. While we cannot capture the sys-
tem fully, we can create the following abstract model of it.
The self-loop zero-sum game is the initialization of the sys-
tem and is equal to the original anti-symmetric empirical
zero-sum game. There is another zero-sum game between
the population and a meta-agent which simulates the rein-
forcement policy that chooses which programs get replaced
and thus generates a new empirical zero-sum payoff matrix.
We can mimic this randomized choice of the policy as a
mixed strategy that chooses a convex combination from a
large number of possible empirical zero-sum payoff matrices.
One of these payoff matrices is the all zero matrix, and the
initial strategy of the reinforcement policy chooses that game
with high probability at time zero, so that the population is at
the start of the process effectively playing just their original
empirical game. For such systems, our results provide some
theoretical justification for the preservation of diversity and
for the satisfying empirical performance.

To conclude, we briefly touch on the connection to progres-
sive training of GANs (Karras et al. 2018). The basic idea is
to start the training process with small generator and discrim-
inator networks and, over time, periodically add layers to the
networks of higher dimension to grow the resolution of the
generated images. This process causes the zero-sum game
(between generator and discriminator) to evolve with time.
Importantly, as a consequence, the equilibrium is not fixed
in the game. We can capture behavior of this process as a
time evolving game in our model: the base game matrix P is
sparse and of high dimension; as the environment w changes
in time the nonzero values in the time-evolving payoff P (w)
‘turn on’, progressively making the matrix dense. Despite the
critical nature of the above artificial intelligence architectures,
which are both based on the guided evolution of zero-sum
games, no model of them exists in the literature and thus offer
exciting possibilities for future work.
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