
Estimating the Number of Induced Subgraphs from Incomplete Data and
Neighborhood Queries

Dimitris Fotakis, 1 Thanasis Pittas, 2 Stratis Skoulakis 3

1 National Technical University of Athens, Greece
2 University of Wisconsin-Madison, WI, USA

3 Singapore University of Technology and Design, Singapore
fotakis@cs.ntua.gr, pittas@wisc.edu, sskoul@sutd.edu.sg

Abstract

We consider a natural setting where network parameters are
estimated from noisy and incomplete information about the
network. More specifically, we investigate how we can effi-
ciently estimate the number of small subgraphs (e.g., edges,
triangles, etc.) based on full access to one or two noisy and
incomplete samples of a large underlying network and on few
queries revealing the neighborhood of carefully selected ver-
tices. After specifying a random generator which removes
edges from the underlying graph, we present estimators with
strong provable performance guarantees, which exploit infor-
mation from the noisy network samples and query a con-
stant number of the most important vertices for the estima-
tion. Our experimental evaluation shows that, in practice, a
single noisy network sample and a couple of hundreds neigh-
borhood queries suffice for accurately estimating the number
of triangles in networks with millions of vertices and edges.

1 Introduction
The readily available data for machine learning and network
parameter estimation tasks are often incomplete and noisy
to the extent that it does not allow for accurate parameter es-
timation (at least not with reasonable confidence). This can
happen for a variety of reasons, e.g., data may be hidden (or
massaged) due to privacy or business issues (Chierichetti,
Kleinberg, and Oren 2018), data logging may be inaccurate,
or the phenomenon represented by the data is only partially
observed (see e.g., (Hoogendoorn and Funk 2018, Chap-
ter 3) and (Guptaa and Guptab 2019; Eliassi-Rad, Caceres,
and LaRock 2019) for discussion and concrete examples).
Additional “clean” data may be available, but at a signifi-
cant cost (which can be monetary, e.g., (Provost, Melville,
and Saar-Tsechansky 2007; Saar-Tsechansky, Melville, and
Provost 2009), computational, e.g., (Hoogendoorn and Funk
2018, Chapter 3), or communication, e.g., (Eliassi-Rad, Cac-
eres, and LaRock 2019; Hanneke and Xing 2009; Kim and
Leskovec 2011)).

In this work, we consider this very general problem in
the specific and important context of network parameter es-
timation. We show how to efficiently combine (one or two)
incomplete and noisy network samples, which are readily
available for “free”, with few vertex neihgborhood queries,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in order to accurately estimate the number of small complete
subgraphs of the actual network. Despite the fact that we fo-
cus on complete subgraphs (edges, triangles and k-cliques)
for simplicity and clarity, our approach can be directly gen-
eralized to any fixed small graphlet (in fact, the number of
k-cliques is the most difficult to estimate with our approach).

Relation to Previous Work and Motivation. In our
network-related setting, (Hanneke and Xing 2009) observed
that reliable data collection is among the most difficult chal-
lenges in modern network analysis. Hence, (Hanneke and
Xing 2009; Kim and Leskovec 2011) introduced the network
completion problem, where one aims to recover the missing
vertices and edges of a partially observed network. They as-
sume that the actual network comes from a known gener-
ative model (e.g., the stochastic block model in (Hanneke
and Xing 2009) or the Kronecker graphs model in (Kim and
Leskovec 2011)) and infer the parameters of the model (and
through them, the network’s unobserved part) using infor-
mation from a randomly revealed part of the network.

To avoid the (often not adequately justified) assump-
tion that the actual network comes from a known model,
(LaRock et al. 2018; Soundarajan et al. 2015, 2017) con-
sidered an orthogonal approach, called node probing. They
assume query access to the actual network and want to re-
veal as many vertices and edges of the unobserved network
as possible, using a fixed number of queries. The query strat-
egy often follows an adaptive exploration-exploitation pat-
tern and crucially depends on the subset of a node’s neigh-
borhood revealed by the queries (see (Eliassi-Rad, Caceres,
and LaRock 2019, slide 67) for a summary).

In this work, we take a different approach, bringing to-
gether the most interesting and realistic features of network
completion and node probing (see also (Bliss, Danforth,
and Dodds 2014; Soundarajan et al. 2016) for similar ap-
proaches). Similarly to probing, we do not make any as-
sumptions about the network’s model, consider an arbitrary
underlying network and assume query access to it. To keep
the model simple, we assume that each query reveals the en-
tire neighborhood of the queried vertex. On the other hand,
we want the revealed part of the network to provide enough
information, in a statistical sense, about the underlying net-
work. Thus, motivated by network completion, we assume
that the revealed part is a random sample of the underlying

network, obtained by a known random process. For techni-
cal reasons related to the theoretical analysis, we allow our
algorithms to use more than one sample of the underlying
network. Moreover, since modern network analysis focuses
on parameter estimation (see e.g., (Easley and Kleinberg
2010; Jackson 2008) and the references therein), our goal
is to accurately estimate the number of k-cliques and other
small induced subgraphs, with one or two incomplete and
noisy samples of the underlying network and a small con-
stant number of vertex queries.

Network Samples and Neighborhood Queries: Our
Model. Formally, we consider an arbitrary fixed undi-
rected underlying network (or graph) G = (V,E), with
|V | = n nodes (or vertices) and |E| = m edges. A sam-
ple Gs = (V,Es) is a spanning subgraph of G, with vertex
set V and edge set Es generated by the following random
process: every vertex, independently, becomes hidden, with
probability p, and visible, otherwise. An edge e is present in
Es , if at least one of e’s endpoints is visible. Formally,Es =
{{u, v} ∈ E | at least one of u or v is visible}. The proba-
bility p that a node is hidden is the same for all nodes and
known to the algorithm (p could be easily estimated, any-
way). We let PG,p denote the distribution over samples from
G defined by the random process above. Our algorithms take
one or two independent samples from PG,p and have query
access to the neighborhood N(v) = {u ∈ V | {v, u} ∈ E}
of any node v ∈ V in the underlying network G. Note that
only neighborhood queries to hidden nodes reveal edges not
present in Gs, but the algorithm is not aware of which nodes
are visible or hidden.

We focus on estimating the number of small complete
subgraphs (edges, triangles and k-vertex cliques, or simply
k-cliques) of the underlying network G. An (ε, δ)-estimator
of the number ρk(G) of k-cliques computes an estimate
ρ̂k(G) such that |ρk(G)− ρ̂k(G)| ≤ ερk(G), with probabil-
ity at least 1−δ. When the above guarantee is too restricting,
a more relaxed version of it is often used in the subgraph
counting literature, where the error can be ε-multiplicative
in a quantity greater than ρk(G) (Theorem 4 uses an (ε, δ)-
estimator of that type). Our algorithms are deterministic, so
the probability is over the random sample(s) of the underly-
ing network. We aim at algorithms that for any underlying
graphG and ε, δ > 0, compute an (ε, δ)-estimation of ρk(G)
with at most two samples of G and a polynomial, in 1/ε and
1/δ, number of queries. Note that this means that the under-
lying graph is assumed to be independent of the accuracy
parameters (e.g. m cannot depend on ε).

Notation. We let d(v) (or dG(v)) be the degree of a ver-
tex v (in network G). We let P[A] be the probability of an
event A, and E[X], Var[X] the expectation and variance of
a random variable X .

Our Contributions: Results and Techniques
On the conceptual side, we introduce a new model of net-
work parameter estimation from incomplete samples and

node neighborhood queries. Our model naturally interpo-
lates between network completion and node probing, allows
for a wide range of ideas from property testing, statistical
estimation and online learning to be applied, and provides
a solid framework for theoretical and experimental evalua-
tion of algorithms, based on accuracy, number of queries and
number of samples used.

On the technical side, we demonstrate the applicability of
the new model with a collection of results about the number
of queries required for an (ε, δ)-estimation of the number
of edges, triangles and k-cliques in the underlying network.
Estimating the number of triangles and k-cliques is a task
important, general and complex enough to demonstrate the
applicability of our approach. For ease of exposition, we first
present our methods for the simplest case of estimating the
number of edges.

As a warm-up, we focus on the number of edges m in
the underlying network and show that its efficient estima-
tion requires combining network samples with neighbor-
hood queries. First, to differentiate our work from a long
line of research in property testing, we explain why a naı̈ve
query-only based estimation of m requires up to nε queries
in the worst-case, for any ε < 1/2. E.g., consider a lol-
lipop graph with a clique of n1−ε nodes and a path of length
n − n1−ε attached to it. If we try to estimate m by query-
ing nodes selected uniformly at random (nothing else can be
done, because the graph is completely unknown), we need
nε queries in expectation, before the first clique node ap-
pears in the sample. Until then, the only reasonable estima-
tion for m is Θ(n), instead of the real value Θ(n2(1−ε)). We
should highlight that query-only based estimators can pro-
vide non-trivial efficiency guarantees only if the underlying
network is sufficiently dense (i.e., m = Θ(n2)), or in gen-
eral, if the value of the estimated parameter is sufficiently
large. So, previous work in property testing (see e.g., (Borgs
et al. 2006; Alon 2002; Alon and Shapira 2005; Goldre-
ich, Goldwasser, and Ron 1998; Goldreich 2017)) focuses
on (ε, δ)-estimators with O(poly(1/ε)) queries for normal-
ized values of important network parameters, i.e., edges/n2,
k-cliques/nk, max-cut/n2, etc.

Next, we discuss naı̈ve estimators based on network sam-
ples only. In a network sample G1 = (V,E1), each edge is
removed with probability p2 and E[E1] = m(1− p2). Thus,
|E1|/(1−p2) is an unbiased estimator ofm. We can general-
ize this idea to N ≥ 1 network samples G1, . . . , GN . Then,
we can compute the union Ê of their edge sets and estimate
m̂ = |Ê|/(1 − p2N). Intuitively, increasing the number of
samples corresponds to decreasing p, as now each edge is
hidden in all samples with probability p2N . We can prove:

Theorem 1. Given N = Θ
(

log1/p
1

ε2δ(1−p)

)
independent

samples G1(V,E1), . . . , GN (V,EN) of the underlying net-
work G(V,E), | ∪Ni=1 Ei|/(1− p2N) is an (ε, δ)-estimation
of the number of edges |E|.

Interestingly, we can show that without neighborhood
queries, Ω(log(1/ε)) samples are also necessary for an
(ε, δ)-estimation of the number of edges, no matter the esti-
mator that we use.

Theorem 2. For all N = o(log(1/ε)) and any estimator
m̂ using N network samples, there exists an underlying net-
work G with m edges, such that

P
G1,...,GN∼PG,p

[|m̂(G1, . . . , GN)−m| > εm] ≥ 1/3 .

Using many network samples is impractical and expen-
sive (and often infeasible). In most applications (e.g., social
networks, biological networks), only few (and usually just
one) samples are available. So, we next use two network
samples and few neighborhood queries to compute an (ε, δ)-
estimation of the number of edges, triangles and k-cliques of
the underlying network.

In the proof of Theorem 1, the estimation error for one
sample is determined by

∑
v d

2
G(v)/m2, which corresponds

to the variance of G’s degree distribution. Then, the estima-
tor reduces the error through access to many network sam-
ples. If the number of samples is fixed, we can reduce the
error by accessing the neighborhood of the highest degree
nodes in G (or in its sample, since G is not directly avail-
able), which contribute most to

∑
v d

2
G(v). This is the intu-

ition behind Algorithm 1, where the estimator is the sum of
the edges revealed by the queries plus the naı̈ve estimator
for the edges in G2 not incident to any of the queried nodes.
The following is the main result of Section 2:

Theorem 3. If the network G has m ≥ n log n edges, Algo-
rithm 1 with q = Θ(p2/(ε2δ(1−p)5)) neighborhood queries
computes an (ε, δ)-estimation m̂ of m.

Algorithm 1 estimates the number of edges of the under-
lying network G using a constant number of queries, not
depending on n or m. So, we can estimate within 1% the
number of edges of a huge (and possibly highly irregular)
network, for which 30% - 40% of the edges may be miss-
ing from the union of the two samples, with few hundreds of
neighborhood queries (see experiments of Section 4)!

The intuition behind the proof of Theorem 3 is that if
the error of the naı̈ve estimator is large, a relatively small
number of high degree vertices have large contribution to∑
v d

2
G(v)/m2. Since their degree is significantly higher

than average, we can identify a large fraction of them from
the sample G1. Then, querying their neighborhoods reduces
quickly the estimation error to an acceptable level.

The reason that Algorithm 1 needs to use two network
samples is purely technical. Suppose that we use a single
network sampleG1 for both determining the query setQ and
estimating the number of G’s edges not incident to Q. Then,
since the selection of Q is strongly biased, conditional on
the event that a node v 6∈ Q, the probability that v is hidden
is no longer p (e.g., for a large regular network, the query
set would almost certainly consist of visible nodes only).
Therefore, scaling up the number of edges not incident to
Q by 1/(1 − p2) is not an unbiased estimator anymore. In
our experiments however, this subtle technical issue does not
seem to make any difference. Obtaining strong theoretical
guarantees for an estimator with a single sample (which may
need to deviate from Algorithm 1, see e.g., the one-sample
algorithm in Section 4) is an intriguing open question. We
should also mention that in Theorem 3, the condition that

the underlying network G has m ≥ n log n edges can be
replaced by the milder condition that ε2δ = Ω(log2(n)/n).

In Section 3, we generalize the ideas above and present
Algorithm 2, which computes an estimation of the num-
ber of k-cliques using two network samples and q =

k32Θ(k)

ε2δ(1−p)Θ(k) neighborhood queries (Theorem 4). As a corol-
lary, we get an estimator for the number of triangles with
q = Θ(1/(ε2δ(1 − p)12)) queries. The main idea and the
proof outline are similar to those in Algorithm 1 and Theo-
rem 3. The key technical step is again to show that a signifi-
cant improvement on the estimation error can be obtained by
querying the highest degree nodes in the first sample. How-
ever, using the second sample to estimate the number of k-
cliques not included in the subgraph induced by the query
set requires more care and technical work than the correc-
tion used in Algorithm 1.

Our approach is general and not restricted to k-cliques.
By appropriately modifying the weights in lines 10 and 13
of Algorithm 2, we can estimate the number of any fixed
k-vertex graphlet in the underlying network. The number
of neighborhood queries is upper bounded by those for
k-cliques, in Theorem 4, since the variance of the naı̈ve
sample-only-based estimator is maximized for k-cliques (in-
tuitively, estimating the number of k-cliques comprises the
most difficult case for our approach).

In Section 4, we experimentally evaluate the performance
of our algorithms on synthetic and real-world networks and
compare them against other estimation methods. We mostly
focus on triangle estimation by a variant of Algorithm 2 that
uses only one network sample. The main message is that the
number of triangles can be estimated within 0.29%−1.66%,
with one network sample and at most 200 neighborhood
queries. Accuracy does not depend on the size of the net-
work, the actual number of triangles, the value of p (we use
p ∈ [0.15, 0.85]), and the variance of the degree distribu-
tion. The estimation accuracy of the one-sample variant of
Algorithm 2 is very close to that of the optimal query set,
decided with full knowledge of the underlying network. We
also investigate robustness of our approach to different sam-
ple generation processes that introduce stronger dependen-
cies among the hidden edges. We observe similar accuracy
levels when every node v hides its edges independently with
unknown probability pv and when visible edges are deter-
mined by a random walk with jumps.

Other Related Work
Our sample generation model was inspired by the public-
private model of social networks (Chierichetti et al. 2015;
Epasto, Esfandiari, and Mirrokni 2019), with the true net-
work fixed, but unknown, and the sample as the concep-
tual analogue of the public part (the analogy, however, stops
here, since the public part in (Chierichetti et al. 2015) is
fixed, while our samples are random.). The most interesting
case is when the private part is a subset of a node’s neigh-
borhood.

The network completion problem with hidden edges has
received considerable attention (see e.g., (Clauset, Moore,
and Newman 2008; Goldberg and Roth 2003; Hanneke and

Xing 2009; Kim and Leskovec 2011), and also (Chen, Mira,
and Onnela 2019) where they consider time-evolving net-
works). Similar network augmentation problems have been
studied in social networks (see e.g., (Koskinen et al. 2013)
and the references therein). Our model and approach bear a
resemblance to exploring a partially visible network through
node probing (Soundarajan et al. 2015, 2017; LaRock et al.
2018; Morales, Caceres, and Eliassi-Rad 2019). However,
research in this direction does not assume anything about
the visible part of the network, considers different query
models, and uses online learning approaches, following
an exploration-exploitation pattern. We refer to the recent
tutorials by (Eliassi-Rad, Soundarajan, and Bhadra 2018;
Eliassi-Rad, Caceres, and LaRock 2019) for a survey.

Among a large volume of research on dealing with incom-
plete networks, the approach of (Soundarajan et al. 2016;
Bliss, Danforth, and Dodds 2014) is closest to ours. Sim-
ilarly to our model, they consider an arbitrary underlying
network and network samples generated by simple random
processes. They focus on estimating simple network param-
eters, such as the number of vertices and edges, the degree
distribution or the clustering coefficient, and naturally con-
sider querying nodes with large degree. However, they adopt
a purely heuristic viewpoint and do not provide any theo-
retical guarantees on the performance of their algorithms.
In contrast to (Soundarajan et al. 2016; Bliss, Danforth,
and Dodds 2014), we adopt a structured sample genera-
tion model, prove strong theoretical performance guaran-
tees about the number of queries required for a given ac-
curacy, and consider the more demanding task of estimating
the number of k-cliques.

Our work is fundamentally different from (and virtually
impossible to fairly compared against) previous work on es-
timation of graphlet counts in large-scale networks through
random node or edge sampling (see e.g., (Ahmed et al.
2014; Ahmed, Willke, and Rossi 2016; Kolda et al. 2014;
Lakhotia et al. 2019; Rossi, Zhou, and Ahmed 2018; Se-
shadhri, Pinar, and Kolda 2013; Jha, Seshadhri, and Pinar
2015)) and on sublinear or streaming algorithms for k-
clique counting (see e.g., (Eden et al. 2015; Eden, Ron,
and Seshadhri 2018, 2020; Gonen, Ron, and Shavitt 2011;
Tsourakakis, Kolountzakis, and Miller 2011)). Our algo-
rithms have access to network samples, which are assumed
to be readily available for “free”. Therefore, in experimen-
tal evaluation, our algorithms need about 200 neighborhood
queries to estimate the number of triangles within 1% in net-
works with millions of nodes, whilst previous work, with-
out access to network samples, requires about 1000 times
more queries for estimations of similar accuracy (see Fig-
ure 2(a), and e.g., (Rossi, Zhou, and Ahmed 2018, Fig. 3)
and (Ahmed et al. 2014, Table 3)). Moreover, we prove
that the number of k-cliques can be estimated with a num-
ber of neighborhood queries not depending on the order
or the size of the network, even for sparse networks. In
contrast, e.g., (Eden, Ron, and Seshadhri 2018) requires
O(n

C
1/k
k

+ mk/2

Ck
)poly(log n, 1/ε, k) queries, where Ck is

the number of k-cliques, which becomes comparable to our
query complexity only if the network is dense.

Algorithm 1 Edge Estimator using Two Network Samples
and q Neighborhood Queries.
Input: SamplesG1, G2 of the underlying networkG and the
number of queries q.
Output: Estimation m̂ of the number of edges of G.

1: Let Q be the set of the q highest degree vertices of G1.
2: Query each v ∈ Q for its neighborhood NG(v).
3: mq ← |{{u, v} ∈ E(G) | u ∈ Q ∨ v ∈ Q}|
4: mrest ← |E(G2 \Q)|/(1− p2)
5: m̂← mq +mrest

6: return m̂.

2 Estimating the Number of Edges with
Neighborhood Queries

We proceed to analyze Algorithm 1, which estimates the
number of edges using only two network samples, G1 and
G2, and a number of vertex neighborhood queries. Next, we
outline the proof of Theorem 3.

Since every query essentially removes a term from the er-
ror
∑
u∈V d

2
G(u)/m2 of the one-sample estimator, we want

to query a set of vertices with large degree in the underlying
network G. We next show that Algorithm 1 computes an un-
biased estimation of the number of edges and upper bound
its variance. The notation Q(G1) below means to highlight
that the query set Q is a random variable, whose value is
determined by the random sample G1.

Lemma 1. The estimation m̂ computed by Algorithm 1 is
unbiased, i.e., EG1,G2∼PG,p

[m̂] = m, and

Var
G1,G2∼PG,p

[m̂] ≤ p2

2(1− p2)
E

G1∼PG,p

 ∑
u∈V \Q(G1)

d2G(u)

The key step in the proof of Theorem 3 is to upper bound

E
[∑

u∈V \Q(G1)
d2G(u)

]
, which quantifies the contribution

of the vertices not in the query set to the estimation error of
Algorithm 1. Then, the proof of Theorem 3 follows easily
from Lemma 1, Lemma 2 and Chebyshev’s inequality.

Lemma 2. Let G = (V,E) be an underlying network with
m ≥ n log n edges and let G1 ∼ PG,p be a sample of G.
Then, for any δ, ε > 0, Algorithm 1 with q = 1/(δε2) queries
has

E
G1∼PG,p

 ∑
u∈V \Q(G1)

d2G(u)

 ≤ 4096

(1− p)4 δε
2m2 ,

whereQ(G1) is the set of the q highest degree vertices inG1

queried by Algorithm 1.

We next outline the proof of Lemma 2. The main idea is to
compare the query set of Algorithm 1 with an optimal query
set, consisting of the q highest degree vertices in the under-
lying graph G. Specifically, we first show that revealing the
neighborhood of the q = 1/(δε2) highest degree vertices of
the underlying network G indeed brings the estimation error
to the desired level.

Algorithm 2 Estimator of the Number of k-Cliques using
Two Samples and q Queries.
Input: SamplesG1, G2 of the underlying networkG and the
number of queries q.
Output: Estimation ρ̂k of the number of k-cliques in G.

1: Let Q be the set of the q highest degree vertices in G1 .
2: Query each v ∈ Q for its neighborhood NG(v).
3: Set G′ ← G2 ∪ {{u, v} ∈ E(G) | v ∈ Q ∧ u ∈
NG(v)} and ρ̂k ← 0

4: for each k-clique C of G′ incident to Q do
5: i← number of vertices of C outside Q
6: if i ≤ 1 then ρ̂k ← ρ̂k + 1
7: else ρ̂k ← ρ̂k + (ip(1− p)i−1 + (1− p)i)−1
8: end for
9: ρ̂k ← ρ̂k + ρk(G2\Q)

kp(1−p)k−1+(1−p)k
10: return ρ̂k

Lemma 3. For any fixed δ, ε > 0, let Q∗ be the set of the
q = 1/(δε2) highest degree vertices in the underlying graph
G. Then,

∑
u∈V \Q∗ d2G(u) ≤ δε2m2 .

As a last step, we argue that selecting the q highest degree
vertices in the sample networkG1 leads to a similar decrease
in the estimation error, because eitherG is almost regular, in
which case querying any set of q vertices is almost equally
good, or G is far from being regular, in which case the high-
est degree vertices can be easily identified from the sample
G1. The latter holds, because the degree of every vertex u
in G1 is either equal to its degree in G, if u is visible, or
close to the scaled version (1− p)dG(u), if u is hidden. The
following shows that selecting the q highest degree vertices
in G1, after such a scaling, is not so much different from
selecting the q highest degree vertices in G.
Lemma 4 (Re-sorting Lemma). Let d1, d2, . . . , dn ∈ N
such that d1 ≥ d2 ≥ · · · ≥ dn, and let c1, c2, . . . , cn ∈
(0, 1]. Let Ŝ be the index set of the n − q smallest products
in {ci · di}ni=1. For any a ∈ (0, 1] such that a ≤ ci, for all
i = 1, . . . , q,

∑
i∈Ŝ di ≤ 1

a

∑n
i=q+1 di .

3 Estimating the Number of k-Cliques
In this section, we generalize the ideas of Section 2 and

estimate the number of k-cliques in the underlying graph
G with two samples and q = k32Θ(k)

ε2δ(1−p)Θ(k) neighborhood
queries. At the conceptual level, the approach is similar to
that of Algorithm 1. However, we need to take care of several
additional technical details not evident when we estimate the
number of edges. The following is the main result of this
section.
Theorem 4. Let G be an underlying network with at least
n logk−1 n induced stars with k − 1 leaves. Then, Algo-
rithm 2 with q = Θ

(
k3(16(2k−1))2(k−1)

(1−p)6(k−1)ε2δ

)
neighborhood

queries computes an estimation ρ̂k of the number ρk(G) of
k-cliques in G such that

P
G1,G2∼PG,p

[
|ρ̂k − ρk(G)| > εsk−1(G)

]
≤ δ ,

where sk−1(G) =
∑
v∈V

(
d(v)
k−1
)

is the number of induced
stars with k − 1 leaves in the underlying network G.

Theorem 4 provides a slightly weaker guarantee than
that of Theorem 3, since the estimation error can be up to
εsk−1(G), instead of ερk(G). For some intuition about that,
consider two neighboring vertices u and v that have a large
number of neighbors in common. Hence, u and v belong to
a large number of triangles that all disappear as soon as both
u and v turn hidden. Hence our analysis should consider all
stars with k−1 leaves inG, which lead to the weaker guaran-
tee of Theorem 4. This is also the guarantee used in closely
related previous work (Seshadhri, Pinar, and Kolda 2013;
Jha, Seshadhri, and Pinar 2015; Kolda et al. 2014) with the
justification that in real world networks, sk−1 is typically
close to the number of k-cliques because of their asymptoti-
cally constant clustering coefficient.

4 Experimental Evaluation
We provide an experimental evaluation of our algorithms
on synthetic and real-world networks. Our algorithms were
implemented in Python, using SNAP (Leskovec and Krevl
2014), and run on a laptop with a 2.7 GHz Intel Core i7-
7500U processor and 8GB RAM. We ignored edge direc-
tions and loops, where applicable.

Methodology. Focusing on triangle estimation, we com-
pare different query strategies and variants of Algorithm 2.
Having a fixed underlying graph, we generate a sample
graph and calculate the absolute relative error of the algo-
rithm’s estimation. We repeat this process 100 times, each
with a new independently generated network sample, and
take the average of all the relative errors, which we plot on
the y-axis. We do so for Algorithm 2 and its one-sample vari-
ant described below, as well as for random query sets and for
the strategy where the highest degree vertices of the actual
underlying network are queried (which, of course, requires
full knowledge of the underlying network).

One-Sample Algorithm. We mostly evaluate a variant of
Algorithm 2 that uses the same network sample for both de-
termining the query set and for the computation of the out-
put value. As discussed in Section 1, after Theorem 3, using
the same sample for both tasks introduces bias to the esti-
mator, because conditioned on the event that a vertex v is
not selected in the query set, the probability that v is hid-
den is no longer p. In our one-sample algorithm we use the
following heuristic approach, which mitigates the bias: after
learning the neighborhood in the underlying network of the
vertices in the query set, we order them in non-increasing
order of their degrees in the underlying network and keep
only the top α-percentile of them in the query set. We re-
move the remaining (1 − α) fraction from the query set
and completely ignore the responses to the corresponding
queries. Intuitively, this removes some dependency between
the query set and the network sample. Thus the probability
that each vertex is hidden gets closer to p, as desired. In our
experiments, we set α = 1/2, without any fine-tuning, to
demonstrate that a simple parameter selection works well.

0 25 50 75 100 125 150 175 200

Number of queries

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
R

el
at

iv
e

er
ro

r(
%

) random queries
one sample (no filtering)
one sample
two samples
optimal queries

(a)

0 25 50 75 100 125 150 175 200

Number of queries

0

10

20

30

40

50

R
el

at
iv

e
er

ro
r(

%
)

p=0.85
p=0.75
p=0.65
p=0.55
p=0.45
p=0.35
p=0.25
p=0.15

(b)

0 1 2 3 4 5 6 7 8

Graph irregularity ×10−3

1

2

3

4

5

6

7

8

R
el

at
iv

e
er

ro
r(

%
)

0 queries
100 queries

(c)

Figure 1: (a) Comparison of different triangle estimation methods and query strategies on as-caida20071105 dataset with p =
0.6. (b) Triangle estimation with one network sample on ego-gplus network for different values of the parameter p. (c) How the
irregularity of the underlying network affects the estimation’s accuracy. We use

∑
u d

2
G(u)/m2 to quantify irregularity of the

underlying network G. For this experiment, we set p = 0.85 and use the estimator of Algorithm 1. Shading around the curves
is proportional to standard deviation.

Figure 1(a) shows the comparison of these methods on as-
caida20071105 dataset (results on the other datasets are sim-
ilar, see Table 1). The one-sample triangle estimator with the
filtering step above becomes comparable to the two-sample
estimator which, in its turn, is very close to the estimator
querying the truly highest-degree vertices. Random queries
do not noticeably improve the estimation as the vertices that
crucially affect the variance term are too few to be selected
by a random strategy.

Dependence on p. We study how the value of p affects the
estimation’s accuracy. Figure 1(b) shows different curves,
each one representing the one-sample triangle estimator’s
error for a different value of p ∈ [0.15, 0.85]. Interestingly,
the error drops very close to 0 after about 200 queries, even
when 85% of the edges are hidden.

The Role of Regularity. While the naı̈ve estimator may
be accurate enough for some networks, it may completely
fail for others. For the case of edges, this is because its er-
ror involves the irregularity measure

∑
v∈V d

2(v)/m2. In
Figure 1(c), we test our edge estimator on synthetic power-
law graphs with different exponents γ ∈ [2, 5]. We find that
when the input graph is highly regular (i.e. γ = 5), the naı̈ve
estimator is accurate and the queries do not make any signif-
icant improvement. However, when the input graph is irreg-
ular (i.e. γ = 2), the naı̈ve estimator has much higher error,
but only few queries suffice to dramatically reduce it.

Evaluation on Different Datasets. We evaluate our one-
sample estimator on real-world and synthetic networks of
different types and sizes. The results are summarized in Ta-
ble 1. Edge estimation is less demanding and 100 queries
suffice for reducing the error below 1.3% in all cases. An-
other observation is that real-world networks are very dif-
ferent regarding their irregularity measure

∑
v d

2
G(v)/m2.

Thus, the naı̈ve estimator performs well for some of them

(e.g., roadNet-PA), while for others (e.g., wiki talk ar), its
error is large, but always improves quickly after some neigh-
borhood queries. Interestingly, the same number of queries
suffices to reduce the error for networks with very differ-
ent size and degree distribution. This allows for an accurate
estimation after a small number of queries, even if the under-
lying network has millions of vertices (e.g., for wiki talk ar,
the query set includes less than 0.02% of the vertices).

Comparison to Existing Methods. Ignoring the sample
graph and using only a small number of queries (i.e., up to
10% of the vertices) cannot lead to better accuracy in prac-
tice. The query complexity of sublinear algorithms (Eden
et al. 2015) for triangle counting increases with the network
size, while our algorithm uses a fixed number of queries. A
more practical method is wedge sampling (Seshadhri, Pinar,
and Kolda 2013), which estimates the number of triangles by
querying wedges uniformly at random. In contrast to ours,
wedge sampling requires that vertex degrees are known and
are used to compute a uniform distribution over the wedges.
As Figure 2(a) shows, even with this additional assumption,
wedge-sampling requires more than 2 ·105 queries for an er-
ror rate similar to that of our estimator with only 200 queries.

Robustness to Sample Generation. We also evaluate the
robustness of our approach to different sample generation
models and depict the results for as-caida20071105 in Fig-
ure 2(b) and 2(c). To adjust the estimator, we change the
weights used in lines 10 and 13 of Algorithm 2: in line 10,
we divide with the probability that an edge is visible, and in
line 13, with the probability that a triangle is visible in the
sample. In fact, we let the estimator learn these probabilities
from the revealed part of the network (i.e., use the empirical
fractions of visible edges and triangles).
Different Probability pv . Initially, each node v ∈ V gets
a probability pv chosen uniformly from [0, 0.7]. Then, v
hides independently, with probability pv , each of its inci-

Graph n m t
∑

u d
2
u/m

2 em̂(0) em̂(100) et̂(0) et̂(100) et̂(200)

roadNet-PA 1088K 1541K 67K 4 · 10−6 0.06 0.06 0.35 0.34 0.34
amazon0302 262K 899K 717K 2 · 10−5 0.13 0.13 0.36 0.31 0.29
higgs-social 456K 12508K 83023K 0.0003 0.47 0.22 1.71 1.06 0.96
lkml-reply 27K 165K 1893K 0.0039 2.08 1.29 7.24 2.93 1.50
powerlaw(γ = 2.1) 100K 317K 1058K 0.0057 2.49 0.43 9.08 1.70 0.65
as-caida20071105 26K 53K 36K 0.0105 2.51 0.53 14.10 1.79 0.50
ego-gplus 23K 39K 18K 0.0192 3.63 0.82 15.23 2.04 0.35
oregon1 010526 11K 23K 19K 0.0227 3.9 0.61 17.63 1.76 0.38
web-frwikinews 25K 68K 23K 0.0628 6.27 0.17 18.1 0.72 0.29
wiki talk fr 1420K 2330K 5849K 0.2298 16.83 0.89 9.16 1.96 1.66
wiki talk ar 1095K 1549K 679K 0.3669 19.9 0.31 14.2 2.37 1.37

Table 1: Evaluation of one-sample edge and triangle estimators on real-world and synthetic networks. m is the number of edges
and t is the number of triangles. The last columns depict the estimation %-error when 0, 100 (and 200 for triangles) queries are
used. The last digits are uncertain due to the variance of the measurements. Network samples are generated with p = 1/2.

ro
ad

Net
-P

A

am
az

on
03

02

hig
gs

-s
ocia

l

lk
m

l-r
ep

ly

pow
er

law

wik
ita

lk
0

2

4

6

8

10

12

R
el

at
iv

e
er

ro
r

(%
)

wedge sampling (20K)

wedge sampling (200K)

our estimator (200)

(a) Comparison to wedge sampling

0 50 100 150 200

Number of queries

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
el

at
iv

e
er

ro
r(

%
)

empirical weights
correct weights

(b) Sample with uniform pv .

0 50 100 150 200

Number of queries

0.0

2.5

5.0

7.5

10.0

12.5

R
el

at
iv

e
er

ro
r(

%
)

(c) Sample generated by random walk with
jumps.

Figure 2: Comparison to existing methods and evaluation on different noise models.

dent edges. An edge is visible if none of its endpoints hides
it. Figure 2(b) shows the performance of our adjusted one-
sample triangle estimator. As can be seen there, using the
weights estimated by the algorithm has no measurable im-
pact on accuracy.
Random Walk with Jumps. Starting from a random node, in
each step, either we continue at a random neighbor of the
current node, or with probability 0.15, we restart from a uni-
form random node (as in (Leskovec and Faloutsos 2006)).
We stop when 35% of the edges are visited and put them
in the sample. Figure 2(c) shows that the estimation error
decreases quickly for this sample generation model as well.

Acknowledgments. Dimitris Fotakis is supported by the
Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to sup-
port Faculty members and Researchers’ and the procure-
ment of high-cost research equipment grant”, project BAL-
SAM, HFRI-FM17-1424. This research was carried out
while Thanasis Pittas was an undergraduate student at the
National Technical University of Athens. He is now sup-
ported by UW-Madison CS Departmental Research Fellow-

ship. Stratis Skoulakis is supported by NRF 2018 Fellowship
NRF-NRFF2018-07.

References
Ahmed, N. K.; Duffield, N.; Neville, J.; and Kompella, R.
2014. Graph sample and hold: A framework for big-graph
analytics. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
1446–1455.
Ahmed, N. K.; Willke, T. L.; and Rossi, R. A. 2016. Estima-
tion of local subgraph counts. In 2016 IEEE International
Conference on Big Data (Big Data), 586–595. IEEE.
Alon, N. 2002. Testing subgraphs in large graphs. Random
Struct. Algorithms 21(3-4): 359–370.
Alon, N.; and Shapira, A. 2005. Linear Equations, Arith-
metic Progressions and Hypergraph Property Testing. The-
ory of Computing 1(1): 177–216.
Bliss, C.; Danforth, C.; and Dodds, P. 2014. Estimation
of Global Network Statistics from Incomplete Data. PLoS
ONE 9. URL https://doi.org/10.1371/journal.pone.010847.

Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Szegedy,
B.; and Vesztergombi, K. 2006. Graph limits and parameter
testing. In Proc. of the 38th ACM Symposium on Theory of
Computing (STOC 2006), 261–270. ACM.
Chen, S.; Mira, A.; and Onnela, J. 2019. Flexible Model Se-
lection for Mechanistic Network Models. Journal of Com-
plex Networks .
Chierichetti, F.; Epasto, A.; Kumar, R.; Lattanzi, S.; and
Mirrokni, V. 2015. Efficient Algorithms for Public-Private
Social Networks. In Proc. of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD 2015), 139–148. ACM.
Chierichetti, F.; Kleinberg, J. M.; and Oren, S. 2018. On
discrete preferences and coordination. Journal of Computer
and System Sciences 93: 11–29.
Clauset, A.; Moore, C.; and Newman, M. 2008. Hierarchical
structure and the prediction of missing links in networks.
Nature 453: 98–101.
Easley, D.; and Kleinberg, J. 2010. Networks, Crowds, and
Markets: Reasoning about a Highly Connected World. Cam-
bridge, MA, USA: Cambridge University Press.
Eden, T.; Levi, A.; Ron, D.; and Seshadhri, C. 2015. Ap-
proximately Counting Triangles in Sublinear Time. In Proc.
of the 56th IEEE Symposium on Foundations of Computer
Science (FOCS 2015), 614–633.
Eden, T.; Ron, D.; and Seshadhri, C. 2018. On approximat-
ing the number of k-cliques in sublinear time. In Proc. of
the 50th ACM SIGACT Symposium on Theory of Computing
(STOC 2018), 722–734.
Eden, T.; Ron, D.; and Seshadhri, C. 2020. Faster sublinear
approximation of the number of k-cliques in low-arboricity
graphs. In Proc. of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2020), 1467–1478. SIAM.
Eliassi-Rad, T.; Caceres, R.; and LaRock, T. 2019. Incom-
pleteness in Networks: Biases, Skewed Results, and Some
Solutions. In Proc. of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD
2019), 3217–3218. ACM.
Eliassi-Rad, T.; Soundarajan, S.; and Bhadra, S. 2018. Prob-
lems with Partially Observed (Incomplete) Networks: Bi-
ases, Skewed Results, and Solutions. In Proc. of the
18th SIAM International Conference on Data Mining (SDM
2018). SIAM. URL http://eliassi.org/sdm18tut.html.
Epasto, A.; Esfandiari, H.; and Mirrokni, V. 2019. On-
Device Algorithms for Public-Private Data with Absolute
Privacy. In Proc. of the 2019 World Wide Web Conference
(WWW 2019), 405–416. ACM.
Goldberg, D.; and Roth, F. 2003. Assessing experimentally
derived interactions in a small world. Proceedings of the
National Academy of Sciences 100: 4372.
Goldreich, O. 2017. Introduction to Property Testing. Cam-
bridge University Press.
Goldreich, O.; Goldwasser, S.; and Ron, D. 1998. Property
Testing and its Connection to Learning and Approximation.
J. ACM 45(4): 653–750.

Gonen, M.; Ron, D.; and Shavitt, Y. 2011. Counting stars
and other small subgraphs in sublinear-time. SIAM Journal
on Discrete Mathematics 25(3): 1365–1411.

Guptaa, S.; and Guptab, A. 2019. Dealing with Noise Prob-
lem in Machine Learning Data-sets: A Systematic Review.
Procedia Computer Science 161: 466–474.

Hanneke, S.; and Xing, E. 2009. Network Completion and
Survey Sampling. In Proc. of the 12th International Con-
ference on Artificial Intelligence and Statistics (AISTATS
2009), volume 5 of JMLR Proceedings, 209–215.

Hoogendoorn, M.; and Funk, B. 2018. Machine Learning
for the Quantified Self: On the Art of Learning from Sensory
Data, volume 35 of Cognitive Systems Monographs. Sp-
inger.

Jackson, M. 2008. Social and Economic Networks. Prince-
ton, NJ, USA: Princeton University Press.

Jha, M.; Seshadhri, C.; and Pinar, A. 2015. Path sampling:
A fast and provable method for estimating 4-vertex subgraph
counts. In Proceedings of the 24th International Conference
on World Wide Web, 495–505.

Kim, M.; and Leskovec, J. 2011. The Network Completion
Problem: Inferring Missing Nodes and Edges in Networks.
In Proc. of the 11th SIAM International Conference on Data
Mining, (SDM 2011), 47–58. SIAM / Omnipress.

Kolda, T. G.; Pinar, A.; Plantenga, T.; Seshadhri, C.; and
Task, C. 2014. Counting triangles in massive graphs with
MapReduce. SIAM Journal on Scientific Computing 36(5):
S48–S77.

Koskinen, J.; Robins, G.; Wang, P.; and P.E.Pattison. 2013.
Bayesian analysis for partially observed network data, miss-
ing ties, attributes and actors. Social Networks 35: 514–527.

Lakhotia, K.; Kannan, R.; Gaur, A.; Srivastava, A.; and
Prasanna, V. 2019. Parallel edge-based sampling for static
and dynamic graphs. In Proceedings of the 16th ACM Inter-
national Conference on Computing Frontiers, 125–134.

LaRock, T.; Sakharov, T.; Bhadra, S.; and Eliassi-Rad, T.
2018. Reducing Network Incompleteness Through Online
Learning: A Feasibility Study. In Proc. of the 14th Inter-
national Workshop on Mining and Learning with Graphs
(MLG 2018). ACM. URL https://www.mlgworkshop.org/
2018/papers/MLG2018 paper 40.pdf.

Leskovec, J.; and Faloutsos, C. 2006. Sampling from Large
Graphs. In Proc. of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD 2006), 631–636. ACM.

Leskovec, J.; and Krevl, A. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. Stanford University.

Morales, P.; Caceres, R.; and Eliassi-Rad, T. 2019. Deep Re-
inforcement Learning for Task-Driven Discovery of Incom-
plete Networks. In Proc. of the 8th International Confer-
ence on Complex Networks and Their Applications - Volume
1 (COMPLEX NETWORKS 2019), volume 881 of Studies in
Computational Intelligence, 903–914. Springer.

Provost, F.; Melville, P.; and Saar-Tsechansky, M. 2007.
Data acquisition and cost-effective predictive modeling:
targeting offers for electronic commerce. In Proc. of
the 9th International Conference on Electronic Commerce
(ICEC 2007), 389–398.
Rossi, R. A.; Zhou, R.; and Ahmed, N. K. 2018. Estimation
of graphlet counts in massive networks. IEEE transactions
on neural networks and learning systems 30(1): 44–57.
Saar-Tsechansky, M.; Melville, P.; and Provost, F. 2009. Ac-
tive Feature-Value Acquisition. Management Science 55:
664–684.
Seshadhri, C.; Pinar, A.; and Kolda, T. G. 2013. Triadic mea-
sures on graphs: The power of wedge sampling. In Proceed-
ings of the 2013 SIAM International Conference on Data
Mining, 10–18. SIAM.
Soundarajan, S.; Eliassi-Rad, T.; Gallagher, B.; and Pinar, A.
2015. MaxOutProbe: An Algorithm for Increasing the Size
of Partially Observed Networks. In Workshop on Networks
in the Social and Information Sciences, 29th Conference on
Neural Information Processing Systems (NIPS 2015). URL
http://arxiv.org/abs/1511.06463.
Soundarajan, S.; Eliassi-Rad, T.; Gallagher, B.; and Pinar,
A. 2016. MaxReach: Reducing network incompleteness
through node probes. In Proc. of the 2016 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analy-
sis and Mining (ASONAM 2016), 152–157. IEEE Computer
Society.
Soundarajan, S.; Eliassi-Rad, T.; Gallagher, B.; and Pinar,
A. 2017. ε-WGX: Adaptive Edge Probing for Enhancing
Incomplete Networks. In Proc. of the 2017 ACM on Web
Science Conference (WebSci 2017), 161–170. ACM.
Tsourakakis, C.; Kolountzakis, M.; and Miller, G. 2011. Tri-
angle Sparsifiers. J. Graph Algorithms Appl. 15(6): 703–
726.

