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Abstract

In this work we consider an online learning problem, called Online k-Clustering1

with Moving Costs, at which a learner maintains a set of k facilities over T rounds2

so as to minimize the connection cost of an adversarially selected sequence of3

clients. The learner is informed on the positions of the clients at each round t only4

after its facility-selection and can use this information to update its decision in5

the next round. However, updating the facility positions comes with an additional6

moving cost based on the moving distance of the facilities. We present the first7

O(log n)-regret polynomial-time online learning algorithm guaranteeing that the8

overall cost (connection + moving) is at most O(log n) times the time-averaged9

connection cost of the best fixed solution. Our work improves on the recent result10

of Fotakis et al. [30] establishing O(k)-regret guarantees only on the connection11

cost.12

1 Introduction13

Due to their various applications in diverse fields (e.g. machine learning, operational research, data14

science etc.), clustering problems have been extensively studied. In the well-studied k-median15

problem, given a set of clients, k facilities should be placed on a metric with the objective to minimize16

the sum of the distance of each client from its closest center [54, 14, 13, 66, 6, 43, 51, 64, 50, 15, 53, 3].17

In many modern applications (e.g., epidemiology, social media, conference, etc.) the positions of the18

clients are not static but rather evolve over time [56, 55, 63, 58, 23, 5]. For example the geographic19

distribution of the clients of an online store or the distribution of Covid-19 cases may drastically20

change from year to year or respectively from day to day [30]. In such settings it is desirable to21

update/change the positions of the facilities (e.g., compositions of warehouses or Covid test-units) so22

as to better serve the time-evolving trajectory of the clients.23

The clients’ positions may change in complex and unpredictable ways and thus an a priori knowledge24

on their trajectory is not always available. Motivated by this, a recent line of research studies25

clustering problems under the online learning framework by assuming that the sequence of clients’26

positions is unknown and adversarially selected [18, 28, 16, 30]. More precisely, a learner must27

place k facilities at each round t � 1 without knowing the positions of clients at round t which are28

revealed to the learner only after its facility-selection. The learner can use this information to update29

its decision in the next round; however, moving a facility comes with an additional moving cost that30

should be taken into account in the learner’s updating decision, e.g. moving Covid-19 test-units31

comes with a cost [18, 28].32

Building on this line of works, we consider the following online learning problem:33

Problem 1 (Online k-Clustering with Moving Costs). Let G(V,E,w) be a weighted graph with34

|V | = n vertices and k facilities. At each round t = 1, . . . , T :35

1. The learner selects Ft ✓ V , with |Ft| = k, at which facilities are placed.36

2. The adversary selects the clients’ positions, Rt ✓ V .37
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3. The learner learns the clients’ positions Rt and suffers38

cost =
X

j2Rt

min
i2Ft

dG(j, i)
| {z }

connection cost of client j

+ � ·MG(Ft�1, Ft)| {z }
moving cost of facilities

where dG(j, i) is the distance between vertices i, j 2 V ; MG(Ft�1, Ft) is the minimum overall39

distance required to move k facilities from Ft�1 to Ft; and � � 0 is the facility-weight.40

An online learning algorithm for Problem 1 tries to minimize the overall (connection + moving)41

cost by placing k facilities at each round t � 1 based only on the previous positions of clients42

R1, . . . , Rt�1. To the best of our knowledge, Problem 1 was first introduced in [18]1. If for any43

sequence of clients, the overall cost of the algorithm is at most ↵ times the overall connection cost of44

the optimal fixed placement of facilities F ⇤ then the algorithm is called ↵-regret, while in the special45

case of ↵ = 1 the algorithm is additionally called no-regret.46

Problem 1 comes as a special case of the well-studied Metrical Task System by considering each of47

the possible
�n
k

�
facility placements as a different state. In their seminal work, [11] guarantee that the48

famous Multiplicative Weights Update algorithm (MWU) achieves (1 + ✏)-regret in Problem 1 for49

any ✏ > 0. Unfortunately, running the MWU algorithm for Problem 1 is not really an option since it50

requires O(nk) time and space complexity. As a result, the following question naturally arises:51

Q. Can we achieve ↵-regret for Problem 1 with polynomial-time online learning algorithms?52

Answering the above question is a challenging task. Even in the very simple scenario of time-invariant53

clients, i.e. Rt = R for all t � 1, an ↵-regret online learning algorithm must essentially compute an54

↵-approximate solution of the k-median problem. Unfortunately the k-median problem cannot be55

approximated with ratio ↵ < 1+2/e ' 1.71 (unless NP ✓ DTIME[nlog logn] [42]) which excludes56

the existence of an (1+2/e)-regret polynomial-time online learning algorithm for Problem 1. Despite57

the fact that many O(1)-approximation algorithms have been proposed for the k-median problem58

(the best current ratio is 1 +
p
3 [53]), these algorithms crucially rely on the (offline) knowledge of59

the whole sequence of clients and most importantly are not designed to handle the moving cost of the60

facilities [54, 14, 13, 66, 6, 43, 51, 64, 50, 15, 53, 3].61

In their recent work, Fotakis et al. [30] propose an O(k)-regret polynomial-time online learning62

algorithm for Problem 1 without moving costs (i.e. the special case of � = 0). Their approach is63

based on designing a no-regret polynomial-time algorithm for a fractional relaxation of Problem 164

and then using an online client-oblivious rounding scheme in order to convert a fractional solution to65

an integral one. Their analysis is based on the fact that the connection cost of any possible client is at66

most O(k) times its fractional connection cost. However in order to establish the latter guarantee67

their rounding scheme performs abrupt changes on the facilities leading to huge moving cost.68

Our Contribution and Techniques. In this work, we provide a positive answer to question (Q), by69

designing the first polynomial-time online learning algorithm for Online k-Clustering with Moving70

Costs that achieves O (log n)-regret for any � � 0. The cornerstone idea of our work was to realize71

that O(1)-regret can be established with a polynomial-time online learning algorithm in the special72

case of G being a Hierarchical Separation Tree (HST). Then, by using the standard metric embedding73

result of [25], we can easily convert such an algorithm to an O(log n)-regret algorithm for general74

graphs. Our approach for HSTs consists of two main technical steps:75

1. We introduce a fractional relaxation of Problem 1 for HSTs. We then consider a specific76

regularizer on the fractional facility placements, called Dilated Entropic Regularizer [26],77

that takes into account the specific structure of the HST. Our first technical contribution78

is to establish that the famous Follow the Leader algorithm [34] with dilated entropic79

regularization admits O(1)-regret for any � � 0.80

2. Our second technical contribution is the design of a novel online client-oblivious rounding81

scheme, called Cut&Round, that converts a fractional solution for HSTs into an integral82

one. By exploiting the specific HST structure we establish that Cut&Round, despite not83

1In [18], an easier version of Problem 1 with 1-lookahead is considered, meaning that the learner learns the
positions of the clients Rt before selecting Ft. Moreover, G is considered to be the line graph and � = 1.
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knowing the clients’ positions Rt, simultaneously guarantees that (i) the connection cost of84

each client j 2 Rt is upper bounded by its fractional connection cost, and (ii) the expected85

moving cost of the facilities is at most O(1) times the fractional moving cost.86

Experimental Evaluation. In Section F of the Appendix we experimentally compare our algorithm87

with the algorithm of Fotakis et al. [30]. Our experiments verify that our algorithm is robust to88

increases of the facility weight � while the algorithm of [30] presents a significant cost increase.89

We additionally experimentally evaluate our algorithm in the MNIST and CIFAR10 datasets. Our90

experimental evaluations suggest that the O(log n)-regret bound is a pessimistic upper bound and91

that in practise our algorithm performs significantly better.92

Related Work. As already mentioned, our work most closely relates with the work of Fotakis et al.93

[30] that provides an O(k)-regret algorithm running in polynomial-time for � = 0. [16] also consider94

Problem 1 for � = 0 with the difference that the connection cost of clients is captured through the95

k-means objective i.e. the sum of the squared distances. They provide an (1 + ✏)-regret algorithm96

with O
�
(k2/✏2)2k

�
time-complexity that is still exponential in k. [18, 28] study the special case97

of Problem 1 in which G is the line graph and � = 1 while assuming 1-lookahead on the request98

Rt. For k = 1, [18] provide an (1 + ✏)-competitive online algorithm meaning that its cost is at99

most (1 + ✏) times the cost of the optimal dynamic solution and directly implies (1 + ✏)-regret. [28]100

extended the previous result by providing a 63-competitive algorithm for k = 2 on line graphs. Our101

work also relates with the works of [23] and [4] that study offline approximation algorithms for102

clustering problems with time-evolving metrics. Finally our work is closely related with the research103

line of online learning in combinatorial domains and other settings of online clustering. Due to space104

limitations, we resume this discussion in Section A of the Appendix.105

2 Preliminaries and Our Results106

Let G(V,E,w) be a weighted undirected graph where V denotes the set of vertices and E the set107

of edges among them. The weight we of an edge e = (i, j) 2 E denotes the cost of traversing e.108

Without loss, we assume that we 2 N and we � 1 for all edges e 2 E. The distance between vertices109

i, j 2 V is denoted with dG(i, j) and equals the cost of the minimum cost path from i 2 V to j 2 V .110

We use n := |V | to denote the cardinality of G and DG := maxi,j2V dG(i, j) to denote its diameter.111

Given a placement of facilities F ✓ V , with |F | = k, a client placed at vertex j 2 V connects to the112

closest open facility i 2 F . This is formally captured in Definition 1.113

Definition 1. The connection cost of a set of clients R ✓ V under the facility-placement F ✓ V with114

|F | = k equals115

CR(F ) :=
X

j2R

min
i2F

dG(j, i)

Next, consider any pair of facility-placements F, F 0
✓ V such that |F | = |F 0

| = k. The moving116

distance between F and F 0 is the minimum overall distance needed to transfer the k facilities from F117

to F 0, formally defined in Definition 2.118

Definition 2. Fix any facility-placements F, F 0
✓ V where |F | = |F 0

| = k. Let ⌃ be the set of119

all possible matchings from F to F 0 , i.e. each � 2 ⌃ is a one-to-one mapping � : F 7! F 0 with120

�(i) 2 F 0 denoting the mapping of facility i 2 F . The moving cost between F and F 0 equals121

MG(F, F
0) := min

�2⌃

X

i2F

dG(i,�(i))

At each round t � 1, an online learning algorithm A for Problem 1 takes as input all the previous122

positions of the clients R1, . . . , Rt�1 ✓ V and outputs a facility-placement Ft := A(R1, . . . , Rt�1)123

such that Ft ✓ V and |Ft| = k. The performance of an online learning algorithm is measured by the124

notion of regret, which we formally introduce in Definition 3.125

Definition 3. An online learning algorithm A for Problem 1 is called ↵-regret with additive regret �126

if and only if for any sequence of clients R1, . . . , RT ✓ V ,127

E
"

TX

t=1

CRt(Ft) + � ·

TX

t=2

MG(Ft�1, Ft)

#
 ↵ · min

|F⇤|=k

TX

t=1

CRt(F
⇤) + � ·

p

T
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where Ft = A(R1, . . . , Rt�1) and ↵,� are constants independent of T .128

An online learning algorithm A selects the positions of the k facilities at each round t � 1 solely129

based on the positions of the clients in the previous rounds, R1, . . . , Rt�1. If A is ↵-regret then130

Definition 3 implies that its time-averaged overall cost (connection + moving cost) is at most ↵131

times the time-averaged cost of the optimal static solution! 2 Furthermore, the dependency on
p
T is132

known to be optimal [11] and � is typically only required to be polynomially bounded by the size of133

the input, as for T !1 the corresponding term in the time-averaged cost vanishes.134

As already mentioned, the seminal work of [11] implies the existence of an (1 + ✏)-regret algorithm135

for Problem 1; however, this algorithm requires O(nk) time and space complexity. Prior to this work,136

the only polynomial time online learning algorithm for Problem 1 was due to Fotakis et al. [30], for137

the special case of � = 0. Specifically, in their work the authors design an online learning algorithm138

with the following guarantee:139

Theorem (Fotakis et al. [30]). There exists a randomized online learning algorithm for Problem 1140

that runs in polynomial time (w.r.t. T , n and logDG) such that141

E
"

TX

t=1

CRt(Ft)

#
 O(k) · min

|F⇤|=k

TX

t=1

CRt(F
⇤) +O(k · n ·

p
log n ·DG) ·

p

T

Clearly, the algorithm of [30] has not been designed to account for charging the moving of facilities,142

as indicated by the absence of the moving cost in the above regret guarantee. The main contribution143

of this work is to obtain (for the first time) regret guarantees that also account for the moving cost.144

Theorem 1. There exists a randomized online learning algorithm for Problem 1 (Algorithm 2) that145

runs in polynomial time (w.r.t. T , n and logDG) and admits the following regret guarantee:146

E
"

TX

t=1

CRt(Ft) + � ·

TX

t=2

MG(Ft�1, Ft)

#
 O(log n) · min

|F⇤|=k

TX

t=1

CRt(F
⇤) + � ·

p

T

for � = O(k · n3/2
·DG ·max(�, 1)) and any � � 0.147

Remark 1. We remark that while our additive regret � is larger than the corresponding term in [30]148

by a factor of o(
p
n), our results apply to any � � 0 while the algorithm of [30] can generally suffer149

unbounded moving cost for � !1, as our experimental results verify.150

2.1 HSTs and Metric Embeddings151

In this section we provide some preliminary introduction to Hierarchical Separation Trees (HSTs),152

as they consist a key technical tool towards proving Theorem 1. A weighted tree T (V,E,w) is a153

weighted graph with no cycles. Equivalently, for any pair of vertices i, j 2 V there exists a unique154

path that connects them. In Definition 4, we establish some basic notation for tree graphs.155

Definition 4. Fix any tree T (V,E,w). For every vertex u 2 V , cld(u) ✓ V denotes the set children156

vertices of u and p(u) denotes its unique parent, i.e. u 2 cld(p(u)). The root r 2 V of T is the157

unique node with p(r) = ? and the set L(T ) := {u 2 V : cld(u) = ?} denotes the leaves of T .158

We use dpt(u) to denote the depth of a vertex u 2 V , i.e. the length of the (unique) path from the root159

r to u, and h(T ) := maxu2L(T ) dpt(u) to denote the height of T . We use lev(u) := h(T )� dpt(u)160

to denote the level of a vertex u 2 V . Finally, T (u) ✓ V denotes the set of vertices on the sub-tree161

rooted at u, i.e. the set of vertices that are descendants of u.162

Next, we proceed to define a family of well-structured tree graphs that constitute one of the primary163

technical tools used in our analysis.164

Definition 5. A Hierarchical Separation Tree (HST) is a weighted tree T (V,E,w) such that (i) for165

any node u and any of its children v 2 cld(u), the edge e = (u, v) admits weight we = 2lev(v), and166

(ii) the tree is balanced, namely lev(u) = 0 for all leaves u 2 L(T ).167

In their seminal works, [10] and later [24] showed that HSTs can approximately preserve the distances168

of any graph G(V,E,w) within some logarithmic level of distortion.169

2Specifically, the time-averaged overall cost of A approaches this upper bound with rate � · T�1/2.
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Theorem 2. For any graph G(V,E,w) with |V | = n and diameter D, there exists a polynomial-time170

randomized algorithm that given as input G produces an HST T with height h(T )  dlogDe s.t.171

1. L(T ) = V , meaning that the leaves of T correspond to the vertices of G.172

2. For any u, v 2 V , dG(u, v)  dT (u, v) and E[dT (u, v)]  O(log n) · dG(u, v).173

Theorem 2 states that any weighted graph G(V,E,w) can be embedded into an HST T with174

O(log n)-distortion. This means that the distance dG(u, v) between any pair of vertices u, v 2 V can175

be approximated by their respective distance dT (u, v) in T within an (expected) factor of O(log n).176

Remark 2. We note that traditionally HSTs are neither balanced nor are required to have weights177

that are specifically powers of 2. However, we can transform any general HST into our specific178

definition, and this has been accounted for in the statement of the above theorem. The details are179

deferred to Section B of the Appendix.180

3 Overview of our approach181

In this section we present the key steps of our approach towards designing the O(log n)-regret online182

learning algorithm for Problem 1. Our approach can be summarized in the following three pillars:183

1. In Section 3.1 we introduce a fractional relaxation of Problem 1 in the special case of HSTs184

(Problem 2). Problem 2 is an artificial problem at which the learner can place a fractional185

amount of facility to the leaves of an HST so as to fractionally serve the arrived clients.186

Since the optimal static solution of Problem 2 lower bounds the optimal static solution187

of Problem 1 in the special case of HSTs, the first step of our approach is to design an188

O(1)-regret algorithm for Problem 2.189

2. In Section 3.2 we present the formal guarantees of a novel randomized rounding scheme,190

called Cut&Round, that is client-oblivious and converts any fractional solution for Prob-191

lem 2 into an actual placement of k facilities on the leaves of the HST with just an O(1)-192

overhead in the connection and the moving cost.193

3. In Section 3.3 we present how the fractional algorithm for Problem 2 together with the194

Cut&Round rounding naturally lead to an O(1)-regret online learning algorithm for Prob-195

lem 1 in the special case of HSTs (Algorithm 1). Our main algorithm, presented in Algo-196

rithm 2, then consists of running Algorithm 1 into an O(log n) HST embedding of input197

graph.198

3.1 A Fractional Relaxation for HSTs199

In this section we introduce a fractional relaxation for Problem 1, called Fractional k-Clustering with200

Moving Costs on HSTs (Problem 2). Fix any HST T (V,E,w) (in this section, V denotes the nodes201

of the HST). We begin by presenting a fractional extension of placing k facilities on the leaves of T .202

Definition 6. The set of fractional facility placements FP(T ) consists of all vectors y 2 R|V | such203

that204

1. yv 2 [0, 1] for all leaves v 2 L(T ).205

2. yv =
P

u2cld(v)

yu for all non-leaves v /2 L(T ).206

3.
P

v2L(T ) yv = k, i.e. the total amount of facility on the leaves equals k.207

For a leaf vertex v 2 L(T ), yv simply denotes the fractional amount of facilities that are placed on it.208

For all non-leaf vertices v /2 L(T ), yv denotes the total amount of facility placed in the leaves of the209

sub-tree T (v). Thus, any integral vector y 2 FP(T ) \ corresponds to a placement of k facilities210

on the leaves of T .211

In Definitions 7 and 8 we extend the notion of connection and moving cost for fractional facility212

placements. In the special case of integral facility placements, Definitions 7 and 8 respectively213

collapse to Definitions 1 and 2 (a formal proof is given in Claims 1 and 2 of Section C of the214

Appendix).215
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Definition 7. The fractional connection cost of a set of clients R ✓ L(T ) under y 2 FP(T ) is216

defined as217

fR(y) :=
X

j2R

X

v2P (j,r)

2lev(v)+1
·max (0, 1� yv)

where P (j, r) denotes the set of vertices in the (unique) path from the leaf j 2 L(T ) to the root r.218

Definition 8. The fractional moving cost between any y, y0 2 FP(T ) is defined as219

||y � y0||T := � ·

X

v2V (T )

2lev(v) · |yv � y0v|

We are now ready to present our fractional generalization of Problem 1 in the special case of HSTs.220

Problem 2 (Fractional k-Clustering with Moving Costs on HSTs). Fix any HST T . At each round221

t = 1, . . . , T :222

1. The learner selects a vector yt 2 FP(T ).223

2. The adversary selects a set of clients Rt ✓ L(T ).224

3. The learner suffers cost fRt(y
t) + ||yt � yt�1

||T .225

In Section 4, we develop and present an O(1)-regret algorithm for Problem 2 (see Algorithm 3). To226

this end, we present its formal regret guarantee established in Theorem 3.227

Theorem 3. There exists a polynomial-time online learning algorithm for Problem 2 (Algorithm 3),228

such that for any sequence R1, . . . , RT ✓ L(T ), its output y1, . . . , yT satisfies229

TX

t=1

fRt(y
t) +

TX

t=2

||yt � yt�1
||T 

3

2
· min
y⇤2FP(T )

TX

t=1

fRt(y
⇤) + � ·

p

T

for � = O
�
k · |L(T )|3/2 ·DT ·max(�, 1)

�
.230

3.2 From Fractional to Integral Placements in HSTs231

As already mentioned, the basic idea of our approach is to convert at each round t � 1 the fractional232

placement yt 2 FP(T ) produced by Algorithm 3 into an integral facility placement Ft ✓ L(T )233

with |Ft| = k on the leaves of the HST. In order to guarantee small regret, our rounding scheme234

should preserve both the connection and the moving cost of the fractional solution within constant235

factors for any possible set of arriving clients. In order to guarantee the latter, our rounding scheme236

Cut&Round (Algorithm 4) uses shared randomness across different rounds. Cut&Round is rather237

complicated and is presented in Section 5. To this end, we present its formal guarantee.238

Theorem 4. There exists a linear-time deterministic algorithm, called Cut&Round (Algorithm 4),239

that takes as input an HST T , a fractional facility placement y 2 FP(T ) and a vector ↵ 2 [0, 1]|V |240

and outputs a placement of k facilities F  Cut&Round(T , y,↵) on the leaves of T (F ✓ L(T )241

and |F | = k) such that242

1. E↵⇠Unif(0,1) [CR(F )] = fR(y) for all client requests R ✓ L(T ).243

2. E↵⇠Unif(0,1) [� ·MT (F, F 0)]  4 · ||y � y0||T for all other fractional facility placements244

y0 2 FP(T ) and F 0
 Cut&Round(T , y0,↵).245

Item 1 of Theorem 4 establishes that although Cut&Round is oblivious to the arrived set of clients246

Rt ✓ L(T ), the expected connection cost of the output equals the fractional connection cost under247

yt 2 FP(T ). Item 2 of Theorem 4 states that once the same random seed ↵ is used into two248

consecutive time steps, then the expected moving cost between the facility-placements Ft and Ft+1249

is at most O(1)-times the fractional moving cost between yt and yt+1. Both properties crucially rely250

on the structure of the HST and consist one of the main technical contributions of our work.251
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3.3 Overall Online Learning Algorithm252

We are now ready to formally introduce our main algorithm (Algorithm 2) and prove Theorem 1.253

First, we combine the algorithms from Theorems 3 and 4 to design an O(1)-regret algorithm for254

Problem 1 on HSTs (Algorithm 1). Up next we present how Algorithm 1 can be converted into an255

O(log n)-regret online learning algorithm for general graphs, using the metric embedding technique256

of Theorem 2, resulting to our final algorithm (Algorithm 2).257

Algorithm 1 O(1)-regret for HSTs.

1: Input: A sequence R1, . . . , RT ✓ L(T ).
2: The learner samples ↵v ⇠ Unif(0, 1) for

all v 2 V (T ).
3: for each round t = 1 to T do
4: The learner places the k facilities to the

leaves of the HST T based on the output
Ft := Cut&Round(T , yt,↵).

5: The learner learns Rt ✓ L(T ).
6: The learner updates yt+1

2 FP(T ) by
running Algorithm 3 for Problem 2 with
input R1, . . . , Rt.

7: end for

Algorithm 2 O(log n)-regret for graphs.

1: Input: A sequence R1, . . . , RT ✓ L(T ).
2: The learner embeds G(V,E,w) into a (ran-

dom) HST T with L(T ) = V via the pro-
cedure of Theorem 2.

3: for each round t = 1 to T do
4: The learner selects a facility-placement

Ft ✓ V .
5: The learner learns Rt ✓ V .
6: The learner updates Ft+1 by giving as in-

put R1, . . . , Rt ✓ L(T ) to Algorithm 1
for T .

7: end for

258

Theorem 5. For any sequence of client requests R1, . . . , RT ✓ L(T ), the sequence of facility-259

placements F1, . . . , FT ✓ L(T ) produced by Algorithm 1 satisfies260

E
"

TX

t=1

CRt(Ft) + � ·

TX

t=2

MT (Ft, Ft�1)

#
 6 · min

|F⇤|=k

TX

t=1

CRt(F
⇤) + � ·

p

T

for � = O
�
k · |L(T )|3/2 ·DT ·max(�, 1)

�
.261

Theorem 5 establishes that Algorithm 1 achieves constant regret in the special case of HSTs and its262

proof easily follows by Theorems 3 and 4. Then, the proof of Theorem 1 easily follows by Theorem 2263

and Theorem 5. All the proofs are deferred to Section C of the Appendix.264

4 O(1)-Regret for Fractional HST Clustering265

In this section we present the O(1)-regret algorithm for Problem 2, described in Algorithm 3, and266

exhibit the key ideas in establishing Theorem 3. Without loss of generality, we can assume that the267

facility-weight satisfies � � 13.268

Algorithm 3 is the well-known online learning algorithm Follow the Regularized Leader (FTRL)269

with a specific regularizer RT (·) presented in Definition 9. Our results crucially rely on the properties270

of this regularizer since it takes into account the HST structure and permits us to bound the fractional271

moving cost of FTRL.272

Definition 9. Given an HST T , the dilated entropic regularizer RT (y) over y 2 FP(T ) is defined273

as274

RT (y) :=
X

v 6=r

2lev(v) · (yv + �v) · ln

✓
yv + �v

yp(v) + �p(v)

◆

where �v := (k/n) · |L(T ) \ T (v)| and n := |L(T )|.275

Algorithm 3 selects at each step t the facility placement yt 2 FP(T ) that minimizes a convex276

combination of the total fractional connection cost for the sub-sequence R1, . . . , Rt�1 and RT (y).277

The regularization term ensures the stability of the output, which will result in a bounded fractional278

moving cost.279

3If not, establishing our guarantees for � = 1 will clearly upper bound the actual moving cost.
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Algorithm 3 FTRL with dilated entropic regularization

1: Input: An adversarial sequence R1, . . . , RT ✓ L(T ).
2: for t = 1 to T do
3: The learner selects yt 2 FP(T ).

4: The learner suffers cost fRt(y
t) + ||yt � yt�1

||T .

5: The learner updates yt+1
 argminy2FP(T )

hPt
s=1 fRs(y) + (�

p
nT ) ·RT (y)

i
.

6: end for

Analysis of Algorithm 3. Due to space limitations, all proofs are moved to Section D of the280

Appendix. The primary reason for the specific selection of the regularizer at Definition 9 is that RT (·)281

is strongly convex with respect to the norm || · ||T of Definition 8, as established in Lemma 1 which282

is the main technical contribution of the section. We use D = DT for the diameter of T .283

Lemma 1. For any vectors y, y0 2 FP(T ),284

RT (y
0) � RT (y) + hrRT (y), y

0
� yi+

�
8kD�2

��1
· ||y � y0||2T

The strong convexity of RT (y) with respect to || · ||T is crucial since it permits us to bound the285

moving cost of Algorithm 3 by its fractional connection cost.286

Lemma 2. For any sequence R1, . . . , RT ✓ L(T ), the output of Algorithm 3 satisfies287

TX

t=2

||yt � yt�1
||T 

1

2
·

TX

t=1

fRt(y
t) +O (�kD) ·

p

T

We remark that using another regularizer R(·) that is strongly convex with respect to another norm288

|| · || would still imply Lemma 1 with respect to || · ||. The problem though is that the fractional moving289

cost
PT

t=1 ||yt�yt�1|| can no longer be associated with the actual moving cost
PT

t=1 MT (Ft, Ft�1).290

It is for this reason that using a regularizer that is strongly convex with respect to || · ||T is crucial.291

Next, by adapting the standard analysis of FTRL to our specific setting, we derive Lemma 3292

establishing that Algorithm 3 admits bounded connection cost.293

Lemma 3. For any sequence R1, . . . , RT ✓ L(T ), the output of Algorithm 3 satisfies294

TX

t=1

fRt(y
t)  min

y⇤2FP

TX

t=1

fRt(y
⇤) +O

⇣
kn3/2D�

⌘
·

p

T

The proof of Theorem 3 directly follows by Lemma 2 and 3. We conclude the section by presenting295

how Step 5 of Algorithm 3 can be efficiently implemented, namely296

min
y2FP(T )

�t(y) :=
tX

s=1

fRs(y) + (�
p

nT ) ·RT (y).

Since �t(y) is strongly convex and the set FP(T ) is a polytope, one could use standard optimization297

algorithms such as the ellipsoid method or projected gradient descent to approximately minimize298

�t(y) given access to a sub-gradient oracle for �t(·). In Claim 11 of Section D of the Appendix,299

we establish that the sub-gradients of �(·) can be computed in polynomial time and thus any of the300

previous methods can be used to approximately minimize �(·). In Lemma 4 we establish the intuitive301

fact that approximately implementing Step 5 does not affect the guarantees of Theorem 3.302

Lemma 4. Let yt be the minimizer of �t(·) in FP(T ) and let zt 2 FP(T ) be any point such that303

�t(zt)  �t(yt) + ✏ for some ✏ = O(T�1/2). Then,304

fRt(z
t) + ||zt � zt�1

||T  fRt(y
t) + ||yt � yt�1

||T +O

⇣
kn3/2D�

⌘
· T�1/2

Remark 3. In our implementation of the algorithm, we approximately solve Step 5 of Algorithm 3 via305

Mirror Descent based on the Bregman divergence of RT (·). This admits the same convergence rates306

as projected gradient descent but the projection step can be computed in linear time with respect to307

the size of the HST T . We present the details of our implementation in Section C of the Appendix.308
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5 The Cut&Round Rounding309

In this section we present our novel rounding scheme (Algorithm Cut&Round) as well as the main310

steps that are required in order to establish Theorem 4. To ease notation, for any real number x � 0311

we denote its decimal part as �(x) = x� bxc.312

Algorithm 4 Cut&Round.
1: Input: An HST T , a fractional placement

y 2 FP(T ) and thresholds ↵v 2 [0, 1] for
all v 2 V (T ).

2: Yr  k
3: for levels ` = h(T ) to 1 do
4: for all nodes v with lev(v) = ` do
5: Yrem  Yv

6: yrem  yv
7: for all children u 2 cld(v) do
8: Yu  Alloc(yu, Yrem, yrem,↵u)

9: Yrem  Yrem � Yu

10: yrem  yrem � yu
11: end for
12: end for
13: end for
14: return F := {u 2 L(T ) : Yu = 1}.

Algorithm 5 Alloc.
Input: Numbers yu, yrem � 0, Yrem 2 N
and ↵u 2 [0, 1].
if Yrem == byremc then

if �(yu) < �(yrem) then
Yu  byuc

else
Yu  byuc+

h
au 

�(yu)��(yrem)
1��(yrem)

i

end if
else

if �(yu) < �(yrem) then

Yu  byuc+
h
au 

�(yu)
�(yrem)

i

else
Yu  byuc+ 1

end if
end if
Return Yu.

313

On principle, Cut&Round (Algorithm 4) assigns to each vertex v an integer number of facilities314

Yv to be placed at the leaves of its sub-tree. Notice that due to sub-routine Alloc (Algorithm 5), Yv315

either equals byvc or byvc + 1. Cut&Round initially assigns k facilities to the set of leaves that316

descend from the root r, which is precisely L(T ). Then, it moves in decreasing level order to decide317

Yv for each node v. Once Yv is determined (Step 5), the Yv facilities are allocated to the sub-trees of318

its children u 2 cld(v) (Steps 7-10) via sub-routine Alloc using the thresholds ↵u, in a manner that319

guarantees that Yv =
P

u2cld(v) Yu (see Section E.1 of the Appendix). This implies the feasibility of320

Cut&Round, as exactly k facilities are placed in the leaves of T at the end of the process.321

Assuming that the set of thresholds ↵v is randomly drawn from the uniform distribution in [0, 1],322

sub-routine Alloc (Algorithm 5) guarantees that Yv either equals byvc or byvc+1 while E↵ [Yv] = yv .323

This is formally captured in Lemma 5 and is crucial in the proof of Theorem 4.324

Lemma 5. Consider Algorithm 4 given as input a vector y 2 FP(T ) and random thresholds325

↵v ⇠ Unif(0, 1). Then,326

Yv =

⇢
byvc with probability 1� �(yv)
byvc+ 1 with probability �(yv)

By coupling Lemma 5 with the HST structure we are able to establish Theorem 4. The proof is327

technically involved and thus deferred to Section E of the Appendix.328

6 Conclusion329

In this work, we designed the first polynomial-time online learning algorithm for Online k-Clustering330

with Moving Costs that achieves O(log n)-regret with respect to the cost of the optimal static facility331

placement, extending the results of Fotakis et al. [30] for the special case of � = 0. A interesting332

future direction is to investigate whether a polynomial-time online learning algorithm with O(1)-333

regret for the problem is theoretically possible or not.334

Limitations: Our current optimality guarantees are with respect to the optimal static facility place-335

ment. Going beyond the notion of regret, an intriguing future direction is establishing guarantees336

with respect to the optimal dynamic facility-placement that moves facilities from round to round by337

suffering the corresponding moving cost.338
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