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Abstract

Motivated by alternating game-play in two-player games, we study an altenating1

variant of the Online Linear Optimization (OLO). In alternating OLO, a learner at2

each round t ∈ [n] selects a vector xt and then an adversary selects a cost-vector3

ct ∈ [−1, 1]n. The learner then experiences cost (ct+ct−1)⊤xt instead of (ct)⊤xt4

as in standard OLO. We establish that under this small twist, the Ω(
√
T ) lower5

bound on the regret is no longer valid. More precisely, we present two online6

learning algorithms for alternating OLO that respectively admitO((log n)4/3T 1/3)7

regret for the n-dimensional simplex and O(ρ log T ) regret for the ball of radius8

ρ > 0. Our results imply that in alternating game-play, an agent can always9

guarantee Õ((log n)4/3T 1/3) regardless the strategies of the other agent while the10

regret bound improves to O(log T ) in case the agent admits only two actions.11

1 Introduction12

Game-dynamics study settings at which a set of selfish agents engaged in a repeated game update13

their strategies over time in their attempt to minimize their overall individual cost. In simultaneous14

play all agents simultaneously update their strategies, while in alternating play only one agent updates15

its strategy at each round while all the other agents stand still. Intuitively, each agent only updates its16

strategy in response to an observed change in another agent.17

Alternating game-play captures interactions arising in various context such as animal behavior, social18

behavior, traffic networks etc. (see [29] for various interesting examples) and thus has received19

considerable attention from a game-theoretic point of view [11, 3, 29, 37, 36]. At the same time,20

alternation has been proven a valuable tool in tackling min-max problems arising in modern machine21

learning applications (e.g. training GANs, adversarial examples etc.) and thus has also been studied22

from an offline optimization perspective [33, 31, 19, 38, 9, 8, 10].23

In the context of two-players, alternating game-play admits the following form: Alice (odd player)24

and Bob (even player) respectively update their strategies on odd and even rounds. Alice (resp. Bob)25

should select her strategy at an odd round so as to exploit Bob’s strategy of the previous (even) round26

while at the same time protecting herself from Bob’s response in the next (even) round. As a result,27

the following question arises:28

Q1: How should Alice (resp. Bob) update her actions in the odd rounds so that, regardless of Bob’s29

strategies, her overall cost (over the T rounds of play) is minimized?30

1.1 Standard and Alternating Online Linear Minimization31

Motivated by the above question and building on the recent line of research studying online learning32

settings with restricted adversaries [15, 22, 4, 5, 6, 30], we study an online linear optimization setting33
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[39], called alternating online linear optimization. We use the term “alternating” to highlight the34

connection with alternating game-play that we subsequently present in Section 1.2.35

In Algorithm 1 we jointly present both standard and alternating OLO so as to better illustrate the36

differences of the two settings.37

Algorithm 1 Standard and Alternating Online Linear Minimization

1: Input: A feasibility set D ⊆ Rn and c0 ← (0, . . . , 0).
2: for each round t = 1, . . . , T do
3: The learner selects a vector xt ∈ D based on c1, . . . , ct−1 ∈ [−1, 1]n

4: The adversary learns xt ∈ D and selects a cost vector ct ∈ [−1, 1]n (based on x1, . . . , xt).
5: The learner learns ct ∈ [−1, 1]n and receives cost,

(ct)⊤xt Standard OLM

(ct + ct−1)⊤xt Alternating OLM
6: end for

In both standard and alternating OLO, the adversary selects ct after the the learner’s selection of xt.38

The only difference between standard and alternating OLM is that in the first case the learner admits39

cost (ct)⊤xt while in the second its cost is (ct + ct−1)⊤xt. An online learning algorithm1selects40

xt ∈ D solely based on the previous cost-vector sequence c1, . . . , ct−1 ∈ [−1, 1]n with the goal41

minimizing the overall cost that is slightly different in standard and alternating OLO.42

The quality of an online learning algorithm A in standard OLO is captured through the notion of43

regret [20], comparing A’s overall cost with the overall cost of the best fixed action,44

RA(T ) := max
c1,...,cT

[
T∑

t=1

(ct)⊤ · xt −min
x∈D

T∑
t=1

(ct)⊤ · x

]
. (1)

When RA(T ) = o(T ), the algorithm A is called no-regret since it ensured that regardless of the45

cost-vector sequence c1, . . . , cT , the time-averaged overall cost of A approaches the time-averaged46

overall cost of the best fixed action with rate o(T )/T → 0. Correspondingly, the quality of an online47

learning algorithm A in alternating OLO is captured through the notion of alternating regret,48

Ralt
A (T ) := max

c1,...,cT

[
T∑

t=1

(ct + ct−1)⊤xt −min
x∈D

T∑
t=1

(ct + ct−1)⊤x

]
. (2)

Over the years various no-regret algorithms have been proposed for different OLO settings2 achieving49

RA(T ) = Õ
(√

T
)

regret [24, 18, 39]. The latter regret bounds are optimal since there is is a simple50

probabilistic construction establishing that any online learning algorithmA admitsRA(T ) = Ω(
√
T )51

even when D is the 2-dimensional simplex. This negative results comes from the fact that the52

adversary has access to the action xt of the algorithm and can appropriately select ct to maximize53

A’s regret.54

At a first sight, it may seem that the adversary can still enforce Ω
(√

T
)

alternating regret to55

any online learning algorithm A by appropriately selecting ct based on xt and possibly on ct−1.56

Interestingly enough the construction establishing Ω(
√
T ) regret, fails in the case of alternating57

regret (see Section 2). As a result, the following question naturally arises,58

59

Q2: Are there online learning algorthm with o
(√

T
)

alternating regret?60

61

Apart from its interest in the context of online learning, answering Q2 implies a very sound answer to62

Q1. In Section 1.2 we present the connection between Alternating OLO and Alternating Game-Play.63

1the notion of an online learning algorithm is exactly the same in standard and alternating OLO.
2the difference concerns the feasibility set D.
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1.2 Alternating OLO and Alternating Game-Play64

Alternating game-play in the context of two-player games can be described formally as follows: Let65

(A,B) be a game played between Alice and Bob. The matrix A ∈ [−1, 1]n×m represents Alice’s66

costs, Aij is the cost of Alice if she selects action i ∈ [n] and Bob selects action j ∈ [m] (respectively67

B ∈ [−1, 1]m×n for Bob). Initially Alice selects a mixed strategy x1 ∈ ∆n. Then,68

• At the even rounds t = 2, 4, 6, . . . , 2k : Bob plays a new mixed strategy yt ∈ ∆m and Alice69

plays xt−1 ∈ ∆n. Alice and Bob incur costs (xt−1)⊤Ayt and (yt)⊤Bxt−1 respectively.70

• At the odd rounds t = 3, 5, . . . , 2k−1 : Alice plays a new mixed strategy xt ∈ ∆n and Bob71

plays yt−1 ∈ ∆m. Alice and Bob incur costs (xt)⊤Ayt−1 and (yt−1)⊤Bxt respectively.72

From the perspective of Alice (resp. Bob), the question is how to select her mixed strategies73

x1, x3, . . . , x2k−1 ∈ ∆n so as to minimize her overall cost74

(x1)⊤Ay2 +

T/2−1∑
k=1

(x2k+1)⊤A(y2k + y2k+2).

In Corollary 1.1 we establish that if Alice uses an online learning algorithm A then her overall regret75

(over the course of T rounds of play) is at mostRalt
A (T/2). As a result, in case Q2 admits a positive76

answer, then Alice can guarantee at most o(
√
T ) regret and improve over the Õ

(√
T
)

regret bound77

provided by standard no-regret algorithms [24, 18, 39, 20].78

Corollary 1.1. In case Alice (resp. Bob) uses an online learning algorithmA to update her strategies79

in the odd rounds, x2k+1 := A(Ay2, Ay4, . . . , Ay2k) for k = 1, . . . , T/2− 1. Then no matter Bob’s80

selected sequence y2, y4, . . . , yT ∈ ∆m,81

(x1)⊤Ay2+

T/2−1∑
k=1

(x2k+1)⊤A(y2k+y2k+2)−min
x∈∆n

x⊤Ay2 +

T/2−1∑
k=1

x⊤A(y2k + y2k+2)

 ≤ Ralt
A (T/2)

Remark 1.2. We remark that Corollary 1.1 refers to the standard notion of regret [20] andRalt
A (T/2)82

appears only as an upper bound. We additionally remark that if both Alice and Bob respectively use83

algorithmsA and B in the context of alternating play, then the time-average strategy vector converges84

with rate O (max(RA(T ),RB(T ))/T ) to Nash Equilibrium in case of zero-sum games (A = −B⊤)85

and to Coarse Correlated Equilibrium for general two-player games [28]. Our objective is more86

general: we focus on optimizing the performance of a single player regardless of the actions of the87

other player.88

1.3 Our Contribution and Techniques89

In this work we answer Q2 on the affirmative. More precisely we establish that,90

• There exists an online learning algorithm (Algorithm 3) with alternating regret91

Õ
(
(log n)4/3T 1/3

)
for D = ∆n (n-dimensional simplex).92

• There exists an online learning algorithm (Algorithm 4) with alternating regret O (ρ log T )93

for D = B(c, ρ) (ball of radius ρ).94

• There exists an online learning algorithm with alternating regret O (log T ) for D = ∆295

(2-dimensional simplex), through a straight-forward reduction from D = B(c, ρ).96

Due to Corollary 1.1 our results provide a non-trivial answer to Q1 and establish that Alice can97

substantially improve over the O(
√
T ) regret guarantees of standard no-regret algorithms.98

Corollary 1.3. In the context of alternating game play, Alice can always guarantee at most99

Õ
(
(log n)4/3T 1/3

)
regret regardless the actions of Bob. Moreover in case Alice admits only 2100

actions (n = 2), the regret bound improves to O (log T ).101

Bailey et al. [3] studied alternating game-play in unconstrained two-player games (the strategy space102

is Rn instead of ∆n). They established that if the x-player (resp. the y-player) uses Online Gradient103

Descent (OGD) with constant step-size γ > 0 (x2k := x2k−2 − γAy2k−1) then it experiences at104
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most O(1/γ) regret regardless the actions of the y-player. In the context of alternating OLM this105

result implies that OGD admits O(1/γ) alternating regret as long as it always stays in the interior of106

D. However the latter cannot be guaranteed for bounded domains (simplex, ball). In fact there is107

a simple example for D = ∆2 at which OGD with admits Ω(1/γ + γT ) alternating regret. More108

recently, [36] studied alternating game-play in zero-sum games (B = −A⊤). They established that109

if both player adopt Online Mirror Descent (OMD) the individual regret of each player is at most110

O(T 1/3) and thus the time-averaged strategies converge to Nash Equilibrium with O(T−2/3) rate.111

The setting considered in this works differs because where the y-player can behave adversarially.112

In order to achieve Õ
(
(log n)4/3T 1/3

)
alternating regret in case D = ∆n, we first propose an113

Õ(T 1/3) algorithm for the special case of D = ∆2. For this special case our proposed algorithm is114

an optimistic-type of Follow the Regularized Leader (FTRL) with log-barrier regularization. Using115

the latter as an algorithmic primitive, we derive the Õ
(
(log n)4/3T 1/3

)
alternating regret algorithm116

for D = ∆n, by upper bounding the overall alternating regret by the sum of local alternating regret117

of 2-actions decision points on a binary tree at which the leafs corresponds to the actual n actions.118

In order to achieve O(ρ log T ) alternating regret for D = B(c, ρ) we follow a relatively different119

path. The major primitive of our algorithm is FTRL with adaptive step-size [16, 5]. The cornerstone120

of our approach is to establish that in case Adaptive FTRL admits more than O (ρ log T ) alternating121

regret, then unormalized best-response (−ct−1) can compensate for the additional cost. By using122

a recent result on Online Gradient Descent with Shrinking Domains [5], we provide an algorithm123

interpolating between Adaptive FTRL and −ct−1 that achieves O(ρ log T ) alternating regret.124

1.4 Further Related Work125

The question of going beyond O(
√
T ) regret in the context of simultaneous game-play has received a126

lot of attention. A recent line of work establishes that if both agents simultaneously use the same127

no-regret algorithm (in most cases Optimistic Hedge) to update their strategies, then the individual128

regret of each agent is Õ(1) [1, 14, 13, 2, 32, 23, 17].129

Our work also relates with the more recent works in establishing improved regret bounds parametrized130

by the cost-vector sequence c1, . . . , cT , sometimes also called “adaptive” regret bounds [16, 25, 34,131

26, 12]. However these parametrized upper bounds focus on finding “easy” instances while still132

maintainingO(
√
T ) in the worst case. Alternating OLO can be considered as providing a slight "hint"133

to the learner that fundamentally changes the worst-case behavior, since its cost is (ct + ct−1)⊤xt134

with the learner being aware of ct−1 prior to selecting xt. Improved regret bounds under different135

notions of hints have been established in [4, 5, 15, 30, 21, 35].136

2 Preliminaries137

We denote with ∆n ⊆ Rn the n-dimensional simplex, ∆n := {x ∈ Rn : xi ≥ 0 and
∑n

i=1 xi = 1}.138

B(c, ρ) denotes the ball of radius ρ > 0 centered at c ∈ Rn, B(c, ρ) := {x ∈ Rn : ∥x− c∥2 ≤ ρ}.139

We also denote with [x]D := argminz∈D ∥z − x∥2 the projection operator to set D.140

2.1 Standard and Alternating Online Linear Minimization141

As depicted in Algorithm 1 the only difference between standard and Alternating OLM is the cost of142

the learner, (ct)⊤xt (OLM) and (ct + ct−1)⊤xt (Alternating OLM). Thus, the notion of an online143

learning algorithm is exactly the same in both settings.144

Definition 2.1. An online learning algorithm A, for an Online Linear Optimization setting with145

D ⊆ Rn, is a sequence of functions A := (A1, . . . ,At, . . .) where At : Rd × . . .× Rd︸ ︷︷ ︸
t−1

7→ D.146

As Definition 2.1 reveals, the notion of an online learning algorithm depends only on the feasibility147

set D. As a result, an online learning algorithm A simultaneously admits both standardRA(T ) and148

alternating regret Ralt
A (T ) (see Equations 1 and 2 for the respective definitions). In Theorem 2.2,149

we present the well-known lower bound establishing that any online learning algorithm A admits150

RA(T ) = Ω(
√
T ) and explain why it fails in the case of alternating regretRalt

A (T ).151

Theorem 2.2. Any online learning algorithm A for D = ∆2, admits regretRA(T ) ≥ Ω
(√

T
)

.152
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Proof. Let ct be independently selected between (−1, 1) and (1,−1) with probability 1/2. Since ct153

is independent of (c1, . . . , ct−1) then
∑T

t=1 E
[
(ct)⊤xt

]
= 0 where xt := At(c

1, . . . , ct−1). At the154

same time, E
[
−minx∈∆2

∑T
t=1(c

t)⊤x
]
≤ O(

√
T ). As a result,RA(T ) ≥ Ω(

√
T ).155

We now explain why the above randomized construction does not apply for alternating regret156

Ralt
A (T ). Let A be the best-response algorithm, At(c

1, . . . , ct−1) := argminx∈∆2
(ct−1)⊤x. Since157

ct = (1,−1) or ct = (−1, 1) we get that minx∈∆2(c
t−1)⊤x = −1 while E

[
(ct)⊤xt

]
= 0 since158

xt := argminx∈∆2
(ct−1)⊤x and ct is independent of ct−1. As a result,159

E

[
T∑

t=1

(ct + ct−1)⊤xt −
T∑

t=1

min
x∈∆2

(ct + ct−1)⊤x

]
= −T +Ω(

√
T ).

The latter implies that there exists at least one online learning algorithm (Best-Response) that admits160

Θ(−T ) alternating regret in the above randomized construction. However the latter is not very161

informative since there is a simple construction at which Best-Response admits linear alternating162

regret.163

We conclude this section with the formal statement of our results. First, for the case that D is the164

simplex, we show Õ(T 1/3) alternating regret (Section 3):165

Theorem 2.3. Let D be the n-dimensional simplex, D = ∆n. There exists an online learning166

algorithm A (Algorithm 3) such that for any cost-vector sequence c1, . . . , cT ∈ [−1, 1]n,167
T∑

t=1

(ct−1+ct)⊤xt−min
x∗∈D

T∑
t=1

(ct−1+ct)⊤x∗ ≤ O
(
T 1/3 · log4/3 (nT )

)
where xt = At(c

1, . . . , ct−1).

Next, when D is a ball of radius ρ, we can improve to Õ(1) alternating regret (Section 4):168

Theorem 2.4. Let D be a ball of radius ρ, D = B(c, ρ). There exists an online learning algorithm A169

(Algorithm 4) such that for any cost-vector sequence c1, . . . , cT where ∥ct∥2 ≤ 1,170
T∑

t=1

(ct−1 + ct)⊤ · xt − min
x∗∈D

T∑
t=1

(ct−1 + ct)⊤ · x∗ ≤ O(ρ log T ) where xt = At(c
1, . . . , ct−1).

Remark 2.5. Using Algorithm 2 we directly get an online learning algorithm with O(log T ) alter-171

nating regret for D = ∆2.172

2.2 Alternating Game-Play173

A two-player normal form game (A,B) is defined by the payoff matrix A ∈ [−1, 1]n×m denoting174

the payoff of Alice and the matrix B ∈ [−1, 1]m×n denoting the payoff of Bob. Once the Alice175

selects a mixed strategy x ∈ ∆n (prob. distr. over [n]) and Bob selects a mixed strategy y ∈ ∆m176

(prob. distr. over [n]). Then Alice suffers (expected) cost x⊤Ay and Bob y⊤Bx.177

In alternating game-play, Alice updates her mixed strategy in the even rounds while Bob updates in178

the odd rounds. As a result, a sequence of alternating play for T = 2K rounds (resp. for T = 2K+1)179

admits the form (x1, y2), (x3, y2), . . . , (x2k+1, y2k), (x2k+1, y2k+2), . . . , (x2K−1, y2K). Thus, the180

regret of Alice in the above sequence of play equals the difference between her overall cost and the181

cost of the best-fixed action,182

Rx(T ) := (x1)⊤Ay2 +

T/2−1∑
k=1

(x2k+1)⊤A(y2k + y2k+2)︸ ︷︷ ︸
Alice’s cost

− min
x∈∆n

x⊤Ay1 +

T/2−1∑
k=1

x⊤A(y2k + y2k+2)


︸ ︷︷ ︸

cost of Alice’s best action

If Alice selects x2k+1 := Ak(Ay2, Ay4, . . . , Ay2k−2, Ay2k) for k ∈ [K − 1] and x1 = A1(·) then183

by the definition of alternating regret in Equation 2, we get that184

(x1)⊤Ay2+

K−1∑
k=1

(x2k+1)⊤(Ay2k+Ay2k+2)−min
x∈∆n

[
x⊤Ay2 +

K−1∑
k=1

x⊤(Ay2k +Ay2k+2)

]
≤ Ralt

A (K)

which establishes Corollary 1.1. The proof for T = 2K + 1 is the same by considering Ay2K+2 = 0.185
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3 The Simplex case186

Before presenting our algorithm for the n-dimensional simplex, we present Algorithm 2 that admits187

O(log2/3 T · T 1/3) alternating regret for the 2-simplex and is the basis of our algorithm for ∆n.188

Definition 3.1 (Log-Barrier Regularization). Let the function R : ∆2 7→ R≥0 where R(x) :=189

− log x1 − log x2.190

Algorithm 2 Online Learning Algorithm for 2D-Simplex

1: Input: c0 ← (0, 0)
2: for rounds t = 1, . . . , T do
3: The learner selects xt := minx∈∆2 [2γ(c

t−1)⊤x+
∑t−1

τ=1(c
τ + cτ−1)⊤x+R(x)/γ].

4: The adversary selects cost vector ct ∈ [0, 1]n

5: The learner suffers cost (ct + ct−1)⊤xt

6: end for

In order to analyze Algorithm 2 we will compare its performance with the performance of the Be the191

Regularized Leader algorithm with log-barrier regularization that is ensured to achieve O(log T/γ)192

alternating regret [20]. The latter is formally stated and established in Lemma 3.2.193

Lemma 3.2. Let y1, . . . , yT ∈ ∆2 where yt := minx∈∆2

[
(ct + ct−1)⊤x+

∑t−1
s=1(c

s + cs−1)⊤x+R(x)/γ
]
.194

Then,
∑T

t=1(c
t + ct−1)⊤xt −mini∈[n]

∑T
t=1(c

t
i + ct−1

i ) ≤ 2 log T/γ + 2.195

In Lemma 3.3 we provide a closed formula capturing the difference between the output xt ∈ ∆2 of196

Algorithm 2 and the output yt ∈ ∆2 of Be the Regularized Leader algorithm defined in Lemma 3.2.197

Lemma 3.3. Let xt = (xt
1, x

t
2) ∈ ∆2 as in Algorithm 2 and yt = (yt1, y

t
2) ∈ ∆2 as in Lemma 3.2.198

Then,199

yt1 − xt
1 = γA−1(xt

1, y
t
1) ·
(
(ct1 − ct2)− (ct−1

1 − ct−1
2 )

)
with A(x1, y1) := (x1y1)

−1+(1−x1)
−1(1−y1)

−1 and |A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1 )| ≤ O(γ).200

Up next we use Lemma 3.2 and Lemma 3.3 to establish that Algorithm 2 admits O(log2/3 T · T 1/3)201

alternating regret.202

Theorem 3.4. Let x1, . . . , xT ∈ ∆2 the sequence produced by Algorithm 2 for the cost sequence203

c1, . . . , cT ∈ [−1, 1]2 with γ = O
(
log1/3 T · T−1/3

)
thenRalt(T ) = O

(
log2/3 T · T 1/3

)
.204

Proof. By Lemma 3.2 then
∑

t∈[T ](c
t + ct−1)⊤xt −mini∈[n]

∑
t∈[T ](c

t
i + ct−1

i ) ≤ O (log T/γ) +205 ∑
t∈[T ](c

t + ct−1)⊤(xt − yt) where yt ∈ ∆2 as in Lemma 3.2. Using Lemma 3.3 we get that206

T∑
t=1

(ct + ct−1)⊤(xt − yt) =

T∑
t=1

(
(ct1 − ct2) + (ct−1

1 − ct−1
2 )

)
(xt

1 − yt1)

= γ

T∑
t=1

(
(ct1 − ct2) + (ct−1

1 − ct−1
2 )

)
A−1(xt

1, y
t
1) ·
(
(ct−1

1 − ct−1
2 )− (ct1 − ct2)

)
= γ

T∑
t=1

A−1(xt
1, y

t
1)
(
(ct−1

1 − ct−1
2 )2 − (ct1 − ct2)

2
)

= γ

T∑
t=1

(ct1 − ct2)
2 ·
(
A−1(xt+1

1 , yt+1
1 )−A−1(xt

1, y
t
1)
)
≤ O(γ2T )

HenceRalt(T ) ≤ O
(
log T/γ + γ2T )

)
≤ O

(
log2/3 T · T 1/3

)
for γ := O

(
log1/3 T/T 1/3

)
.207

3.1 The n-Dimensional Simplex208

Without loss of generality we assume that n = 2H . We consider a complete binary tree T (V,E)209

of height H = log n where the leaves L ⊆ V corresponds to the n actions, |L| = n. Each node210
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s ∈ V/L admits exactly two children with ℓ(s), r(s) respectively denoting the left and right child.211

Moreover, Level(h) ⊆ V denotes the nodes lying at depth h from the root ( Level(1) = {root} and212

Level(log n) = L). Up next we present the notion of policy on the nodes of T (V,E).213

Definition 3.5. • A policy over the nodes π : V/L 7→ ∆2 encodes the probability of selecting214

the left/right child at node s ∈ V . Specifically π(s) = (π(ℓ(s)|s), π(r(s)|s)) where π(ℓ(s)|s) +215

π(r(s)|s) = 1 and π(ℓ(s)|s) is the probability of selecting ℓ(s) (resp. for r(s)).216

• Pr(s, i, π) denotes the probability of reaching leaf i ∈ L starting from node s ∈ V/L and following217

π(·) at each step.218

• xπ ∈ ∆n denotes the probability distribution over the leaves/actions induced by π(·). Formally,219

we have xπ
i := Pr(root, i, π) for each leaf i ∈ L.220

Definition 3.6. Given a cost vector c ∈ [−1, 1]n for the leaves/actions, the virtual cost of a node221

s ∈ V under policy π(·), denoted as Q(s, π, c), equals222

Q(s, π, c) :=

{
cs s ∈ L∑

i∈L Pr(s, i, π) · ci s /∈ L

The virtual cost vector of s ∈ V under π(·) is defined as q(s, π, c) := (Q(ℓ(s), π, c), Q(r(s), π, c)).223

We remark that Q(s, π, c) is the expected cost of the random walk starting from s ∈ V and following224

policy π(·) until a leaf i ∈ L is reached in which case cost ci is occurred.225

Our online learning algorithm for the n-dimensional simplex is illustrated in Algorithm 3.

Algorithm 3 An Online Learning Algorithm for the n-Dimensional Simplex

1: Input: A sequence of cost vectors c1, . . . , cT ∈ [−1, 1]n

2: The learner constructs a complete binary tree T (V,E) with L = A.
3: for each round t = 1, . . . , T do
4: for each h = log n to 1 do
5: for every node s ∈ Level(h) do
6: The learner computes q

(
s, πt, ct−1

)
:=
(
Q
(
ℓ(s), πt, ct−1

)
, Q
(
r(s), πt, ct−1

))
and

sets

πt(s) := argmin
x∈∆2

[
2q(s, πt, ct−1)⊤x+

t−1∑
τ=1

(
q(s, πτ , cτ−1) + q(s, πτ , cτ )

)⊤
x+R(x)/γ

]
7: end for
8: end for
9: The learner selects xt := xπt ∈ ∆n (induced by policy πt, Definition 3.5).

10: The adversary selects cost vector ct ∈ [0, 1]n

11: The learner suffers cost (ct + ct−1)⊤yt

12: end for

226

We remark that at each round t, the learner computes a policy πt(·) as an intermediate step (Step 6)227

that then uses to select the probability distribution xt := xπt ∈ ∆n (Step 9). Notice that the228

computation of policy πt(·) is performed in Steps (4)-(8). Since nodes are processed in decreasing229

order (with respect to their level), during Step 6 πt(·) has already been determined for nodes ℓ(s), r(s)230

and thus Q
(
ℓ(s), πt, ct−1

)
, Q
(
r(s), πt, ct−1

)
are well-defined.231

Up next we present the main steps for establishing Theorem 2.3. A key notion in the analysis of232

Algorithm 3 is that of local alternating regret of a node s ∈ V presented in Definition 3.7. As233

established in Lemma 3.8 the overall alternating regret of Algorithm 3 can be upper bounded by the234

sum of the local alternating regrets of the nodes lying in the path of the best fixed leaf/action.235

Definition 3.7. For any sequence c1, . . . , cT ∈ [−1, 1]n the alternating local regret of a node s ∈ V ,236

denoted asRT
loc(s), is defined as237

RT
loc(s) :=

∑
t∈[T ]

(
q(s, πt, ct) + q(s, πt, ct−1)

)⊤
πt(s)− min

α∈{ℓ(s),r(s)}

∑
t∈[T ]

(
Q(α, πt, ct) +Q(α, πt, ct−1)

)
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Lemma 3.8. Let a leaf/action i ∈ L and consider the path p = (root = s1, . . . , sH = i) from the238

root to the leaf i ∈ L. Then,
∑T

t=1(c
t + ct−1)⊤xπt − 2

∑T
t=1 c

t
i ≤

∑H
ℓ=1Rloc(sℓ).239

Up to this point, it is evident that in order to bound the overall alternating regret of Algorithm 3,240

we just need to bound the local alternating regret of any node s ∈ V . Using Theorem 3.4 we241

can bound the local regret of leaves i ∈ L for which q(i, πt, ct−1) = q(i, πt−1, ct−1). However242

this approach does apply for nodes s ∈ V/L since the local regret does not have the alternating243

structure, q(s, πt, ct−1) ̸= q(s, πt−1, ct−1). To overcome the latter in Lemma 3.9 we establish that244

q(s, πt, ct−1), q(s, πt−1, ct−1) are in distanceO (γ) which permits us to boundRT
loc(s) for s ∈ V/L245

by tweaking the proof of Theorem 3.4.246

Lemma 3.9. Let π1, . . . , πT the policies produced by Algorithm 3 then for any node s ∈ V ,247

i) ∥πt(s)− πt−1(s)∥1 ≤ 48γ and ii) ∥q(s, πt, ct−1)− q(s, πt−1, ct−1)∥∞ ≤ 48γ log n.248

Using Lemma 3.9 we can establish an upper bound on the local regret of any actions s ∈ V . The proof249

of Lemma 3.10 lies in Appendix B and follows a similar structure with the proof of Theorem 3.4.250

Lemma 3.10. Let γ := O
(
log1/3 T/(T 1/3 log1/3 n)

)
in Algorithm 3 then RT

loc(s) ≤251

O
(
log2/3 T · log1/3 n · T 1/3

)
for all s ∈ V .252

Theorem 2.3 directly follows by combining Lemma 3.10, Lemma 3.8 and H = log n.253

4 The Ball case254

In Algorithm 4 we present an online learning algorithm with O (log T ) for D = B(0, 1) and255

∥ct∥2 ≤ 1. Then through the transformation x̂t := c+ ρxt with xt ∈ B(0, 1), Algorithm 4 can be256

transformed to a O (ρ log T )-alternating regret algorithm for D = B(c, ρ).257

258

Algorithm 4 Online Learning Algorithm for Unit Ball

1: p1 ← 0, D1 ← [0, 1] and c0 ← (0, . . . , 0).
2: for each round t = 1, · · · , T do
3: The learner computes the coefficient r0:t−1 ←

√
1 +

∑t−1
s=1 ∥cs + cs−1∥22

4: The learner computes the output of FTRL,

wt ← argmin∥x∥≤1

[
t−1∑
s=1

(cs + cs−1)⊤x+
r0:t−1

2
∥x∥22

]
# Adaptive FTRL

5: The learner selects the action xt ← (1− pt)wt + pt(−ct−1) # Mixing Adaptive FTRL
with Unormalized Best-Response

6: The adversary selects cost ct with ∥ct∥2 ≤ 1 and the learner suffers cost (ct−1 + ct)⊤xt.
7: The learner updates the interval Dt ⊆ [0, 1] as follows,

Dt ←

0,min

1,
20√

1 +
∑t

s=1 ∥cs + cs−1∥22


and then updates the coefficient pt ∈ [0, 1] as follows,

pt+1 ←

[
pt +

20(ct + ct−1)⊤ · (xt + ct−1)

1 +
∑t

s=1 ∥cs + cs−1∥22

]
Dt

8: end for

Algorithm 4 may seem complicated at the first sight however it is composed by two basic algorithmic259

primitives. At Step 4 Algorithm 4 computes the output wt ∈ B(0, 1) of the Follow the Regularized260

Leader (FTRL) with Euclidean regularization and adaptive step-size r0:t−1 (Step 3 of Algorithm 4).At261
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Step 5, it mixes the output wt ∈ B(0, 1) of FTRL with the unnormalized best-response −ct−1 ∈262

B(0, 1). The selection of the mixing coefficient pt is adaptively updated at Step 7.263

4.1 Proof of Theorem 2.4264

In this section we present the main steps of the proof of Theorem 2.4. In Lemma 4.1 we provide a265

first upper bound on the alternating regret of Adaptive FTRL.266

Lemma 4.1. Let w1, . . . , wT ∈ B(0, 1) the sequence produced by Adaptive FTRL (Step 4 of Algo-267

rithm 4) given as input the cost-vector sequence c1, . . . , cT ∈ B(0, 1). Let t1 denote the maximum268

time-index such that
∑t

s=1(c
s + cs−1)⊤wt ≥ −

∑t
s=1 ∥cs + cs−1∥22/4. Then,269

T∑
t=1

(ct + ct−1)⊤wt − min
x∈B(0,1)

T∑
t=1

(ct + ct−1)⊤x ≤ 4

√√√√1 +

t1∑
t=1

∥ct + ct−1∥22 +O (log T )

Lemma 4.1 guarantees that Adaptive FTRL admits only o(
√
T ) alternating regret in case t1 = o(T ).270

Using Lemma 4.1, we establish Lemma 4.2 which is the cornerstone of our algorithm and guarantees271

that once Adaptive FTRL is appropriately mixed with unormalized best-response (−ct−1), then the272

resulting algorithm always admits O(log T ) regret.273

Lemma 4.2. Let w1, . . . , wT ∈ B(0, 1) be produced by Adaptive FTRL given as input c1, . . . , cT ∈274

B(0, 1) and t1 be the maximum round such that
∑t

s=1(c
s + cs−1)⊤ws ≥ −

∑t
s=1 ∥cs + cs−1∥22/4.275

Let p := 20/
√
400 +

∑t1
t=1 ∥ct + ct−1∥22 and let yt := (1− p)wt − pct−1 for t ≤ t1 and yt := wt276

for t ≥ t1 + 1. Then
∑T

t=1(c
t + ct−1)⊤yt −minx∈B(0,1)

∑T
t=1(c

t + ct−1)⊤x ≤ O (log T ).277

Lemma 4.2 establishes that in case at Step 5, Algorithm 4 mixed the output wt of Adaptive FTRL278

with the unormalized best-response (−ct−1 ∈ B(0, 1)) as follows,279

yt := (1− qt) · wt + qt · (−ct−1) with qt :=
20I [t ≤ t1]√

400 +
∑t1

t=1 ∥ct + ct−1∥22
, (3)

then it would admit O(log T ) alternating regret. Obviously, Algorithm 4 does not know a-priori280

neither t1 nor
∑t1

t=1 ∥ct + ct−1∥22. However by using the recent result of [5] for Online Gradient281

Descent in Shrinking Domains, we can establish that the mixing coefficients pt ∈ [0, 1] selected by282

Algorithm 4 at Step 7, admit the exact same result as selecting qt ∈ [0, 1] described in Equation 3.283

The latter is formalized in Lemma 4.3.284

Lemma 4.3. Let the sequences w1, . . . , wT ∈ B(0, 1) and p1, . . . , pT ∈ (0, 1) produced by285

Algorithm 4 given as input c1, . . . , cT ∈ B(0, 1). Additionally let t1 denote the maximum286

time such that
∑t

s=1(c
s + cs−1)⊤ws ≥ −

∑t
s=1 ∥cs + cs−1∥22/4 and consider the sequence287

qt := I [t ≤ t1] ·
(
20/
√
400 +

∑t1
t=1 ∥ct + ct−1∥22

)
. Then,288 ∑

t∈[T ]

(ct−1 + ct)⊤(wt + ct−1) · qt −
∑
t∈[T ]

(ct−1 + ct)⊤(wt + ct−1) · pt ≤ O(log T )

5 Conclusion289

In this paper we introduced a variant of the Online Linear Optimization that we call Alternating290

Online Linear Optimization for which we developed the first online learning algoithms with o(
√
T )291

regret guarantees. Our work is motivated by the popular setting of alternating play in two-player292

games and raises some interesting open questions. The most natural ones is understanding whether293

Õ(1) regret guarantees can be established the n-dimensional simplex as well as establishing o(
√
T )294

for general convex losses.295

Limitations: The current work is limited to the linear losses setting. Notice that the classic reduction296

from convex to linear losses in Standard OLM no longer holds in Alternating OLM. Therefore the297

generalization to general convex losses seems to require new techniques. We defer this study for298

future work.299
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A Omitted Proofs of Section 3430

A.1 Auxilliary Lemmas431

Lemma A.1. The log-barrier function R(x) = − log x− log(1− x) is 1-strongly convex in [0, 1].432

More precisely, for all x, y ∈ [0, 1]433

R(y) ≥ R(x) +R′(x)⊤(y − x) +
1

2
|x− y|2

Proof. Let f(x) := − log x then f ′(x) = − 1
x and f ′′(x) = 1

x2 . Since x ≤ 1 we get that f ′′(x) ≥ 1434

and thus435

f(y) ≥ f(x) + f ′(x)(y − x) +
1

2
(x− y)2

At the same time the function f(x) = − log(1− x) is convex in [0, 1]. This concludes the proof.436

Lemma A.2. Let x := argminz∈[0,1] [γc · z +R(z)] and y := argminz∈[0,1] [γĉ · z +R(z)] where437

R(·) is an 1-strongly convex function in R. Then,438

|x− y| ≤ 2γ |c− ĉ|

Proof. By the strong convexity of the function γcT z +R(z) and first order optimality conditions for439

x, we get that440

γc⊤y +R(y) ≥ γc⊤x+R(x) +
1

2
|x− y|2

As a result, we get that441

1

2
|x− y|2 ≤ γc · (y − x) +R(y)−R(x)

= γĉ · (y − x) + γ(c− ĉ) · (y − x) +R(y)−R(x)

≤ γ(c− ĉ) · (y − x)

which implies that |x− y| ≤ 2γ |c− ĉ|.442

A.2 Proof of Lemma 3.2443

Lemma 3.2. Let y1, . . . , yT ∈ ∆2 where yt := minx∈∆2

[
(ct + ct−1)⊤x+

∑t−1
s=1(c

s + cs−1)⊤x+R(x)/γ
]
.444

Then,
∑T

t=1(c
t + ct−1)⊤xt −mini∈[2]

∑T
t=1(c

t
i + ct−1

i ) ≤ 2 log T/γ + 2.445

Proof. We start by rewrite the regret minimization problem over ∆2 as an equivalent one over [0, 1],446

that is447
T∑

t=1

(ct + ct−1)⊤(xt − x⋆) =

T∑
t=1

(ĉt + ĉt−1)⊤(xt
1 − x⋆

1)

where ĉt = ct1 − ct2. Moreover notice that448

yt1 := argmin
p∈[0,1]

[
t∑

τ=1

(ĉτ + ĉτ−1)p− log p+ log(1− p)

γ

]
(4)

By the "Follow the Leader/Be the Leader" Lemma [7, Lemma 3.1] , we have that449 [
T∑

t=1

(ĉt + ĉt−1)yt1 −
log yt1 + log(1− yt1)

γ

]
≤ min

p∈[0,1]

[
T∑

t=1

(ĉt + ĉt−1)p− log p+ log(1− p)

γ

]
.

That implies450 [
T∑

t=1

(ĉt + ĉt−1)yt1

]
≤ min

p∈[0,1]

[
T∑

t=1

(ĉt + ĉt−1)p− log p+ log(1− p)

γ

]
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Now let x⋆ = argminp∈[0,1]

∑T
t=1(ĉ

t + ĉt−1)p and let us subtract
∑T

t=1(ĉ
t + ĉt−1)x⋆ from both451

sides452 [
T∑

t=1

(ĉt + ĉt−1)(yt1 − x⋆)

]
≤ min

p∈[0,1]

[
T∑

t=1

(ĉt + ĉt−1)p− log p+ log(1− p)

γ

]
−

T∑
t=1

(ĉt + ĉt−1)x⋆

In case x⋆ = 0, we upper bound the minimum on the right hand side with the same expression453

evaluated at p := 1/T . As a result,454 [
T∑

t=1

(ĉt + ĉt−1)(yt1 − 0)

]
≤

T∑
t=1

(ĉt + ĉt−1)
1

T
−

log( 1
T ) + log(1− 1

T )

γ

≤ 2 +
log(T ) + log( T

T−1 )

γ
≤ 2 +

2 log T

γ
(5)

In case x⋆ = 1, we upper bound the minimum on the right hand side by the expression evaluated at455

p := 1− 1/T . As a result,456 [
T∑

t=1

(ĉt + ĉt−1)(yt1 − 1)

]
≤

T∑
t=1

(ĉt + ĉt−1)

(
1− 1

T

)
−

log( 1
T ) + log(1− 1

T )

γ
−

T∑
t=1

(ĉt + ĉt−1)

≤ 2 +
log(T ) + log( T

T−1 )

γ
≤ 2 +

2 log T

γ
(6)

Therefore putting together Equation (5) and Equation (6), we can conclude that
∑T

t=1(c
t+ct−1)⊤xt−457

mini∈[2]

∑T
t=1(c

t
i + ct−1

i ) ≤ 2 log T/γ + 2.458

459

A.3 Proof of Lemma 3.3460

Before presenting the formal proof of Lemma 3.3 we present Lemma A.3 and Lemma A.4 that are461

necessary for its proof.462

Lemma A.3. Let xt as in Algorithm 2 and yt1 be the BTRL update as in Lemma 3.2 with R(x) =463

− log x− log(1− x) and xt
1 be the update as in Algorithm 3. Then the following hold.464

• |xt
1 − yt1| ≤ 8γ465

• |xt
1 − xt+1

1 | ≤ 16γ466

•
∣∣yt1 − yt+1

1

∣∣ ≤ 8γ467

Proof. Notice that for any x, y ∈ ∆2 and cost vector c = (c1, c2) ∈ R2, we have that

c⊤(x− y) = c1(x1 − y1) + c2(x2 − y2) = c1(x1 − y1) + c2(−x1 + y1) = (x1 − y1)(c1 − c2).

This means that we can reduce the bidimensional update in Algorithm 2 as468

xt
1 = argmin

p∈[0,1]

[
2(ct−1

1 − ct−1
2 )p+

t−1∑
s=1

(cs1 − cs2 + cs−1
1 − cs−1

2 )p− log p+ log(1− p)

γ

]
(7)

At this point, using strong convexity of the log barrier function (Lemma A.1), the form of the updates469

in Equation (4) and Equation (7), we can invoke Lemma A.2 using x = xt
1 and y = yt1, this gives470 ∣∣xt

1 − yt1
∣∣ ≤ 2γ

∣∣2ct−1
1 − 2ct−1

2 − ct1 − ct−1
1 + ct2 + ct−1

2

∣∣ ≤ 8γ

where we used that the cost sequence is in [−1, 1]. For the second fact, we invoke again Lemma A.2471

but with x = xt
1 and y = xt+1

1 and we obtain472 ∣∣xt
1 − xt+1

1

∣∣ ≤ 2γ
∣∣2ct−1

1 − 2ct−1
2 − ct1 − ct−1

1 + ct2 + ct−1
2 − 2ct1 + 2ct2

∣∣ ≤ 16γ

For the third fact, we use Lemma A.2 but with x = yt1 and y = yt+1
1 and we obtain473 ∣∣yt1 − yt+1

1

∣∣ ≤ 2γ
∣∣ct+1

1 − ct+1
2 − ct1 + ct2

∣∣ ≤ 8γ

474
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Lemma A.4. Let (x, y) ∈ [0, 1]2 and (x′, y′) ∈ [0, 1]2 such that |x − y| ≤ B , |x − y′| ≤ B,475

|x′ − y| ≤ B and |x′ − y′| ≤ B with B ≤ 1
8 then476

|A−1(x, y)−A−1(x′, y′)| ≤ 192|x− x′|+ 192|y − y′|

where A(x, y) = (xy)−1 − (1− x)−1(1− y)−1.477

Proof. To simplify notation we denote xt := tx+ (1− t)x′ and yt := ty + (1− t)y′. Then478

A−1(x, y)−A−1(x′, y′) =

∫ 1

0

⟨∇A−1(xt, yt), (x, y)− (x′, y′)⟩ ∂t

≤ max
t∈[0,1]

∥∇A−1(xt, yt)∥∞ · ∥(x, y)− (x′, y′)∥1 (8)

Let us focus on bounding ∥∇A−1(xt, yt)∥∞. Notice that479 ∣∣∣∣∂A−1(xt, yt)

∂x

∣∣∣∣ ≤ 3

((1− xt)(1− yt) + xtyt)
2 . (9)

Now, notice that |xt − yt| ≤ t|x− y|+ (1− t)|x′ − y′| ≤ B. Using the latter we can lower bound480

the denominator of Equation 9. More precisely,481

(1− xt)(1− yt) + xtyt = x2
t + (1− xt)

2 + (1− 2yt)(yt − xt)

≥ 1

4
− |1− 2yt| |yt − xt|

≥ 1

4
−B

So for B ≤ 1
8 we obtain482 ∣∣∣∣∂A−1(xt, yt)

∂x

∣∣∣∣ ≤ 3 · 82 = 192.

By symmetricity, we can bound with analogous steps the partial derivative wrt to y and hence we get483

∥∇A−1(xt, yt)∥∞ ≤ 192.

Plugging this bound back in Equation (8) concludes the proof.484

Lemma 3.3. Let xt = (xt
1, x

t
2) ∈ ∆2 as in Algorithm 2 and yt = (yt1, y

t
2) ∈ ∆2 as in Lemma 3.2.485

Then,486

yt1 − xt
1 = γA−1(xt

1, y
t
1) ·
(
(ct1 − ct2)− (ct−1

1 − ct−1
2 )

)
with A(x1, y1) := (x1y1)

−1+(1−x1)
−1(1−y1)

−1 and |A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1 )| ≤ O(γ).487

Proof. In order to prove this Lemma 3.3, we use the equivalent one-dimensional description provided488

in Equation 10.489

xt
1 = argmin

p∈[0,1]

[
2(ct−1

1 − ct−1
2 )p+

t−1∑
s=1

(cs1 − cs2 + cs−1
1 − cs−1

2 )p− log p+ log(1− p)

γ

]
. (10)

Similarly the update of BTRL in Lemma 3.2 can be equivalently descirbed as,490

yt1 = argmin
p∈[0,1]

[
t∑

s=1

(cs1 − cs2 + cs−1
1 − cs−1

2 )p− log p+ log(1− p)

γ

]
. (11)

Since limp→∂[0,1] R(p) =∞ both xt
1, y

t
1 ∈ [0, 1] \ ∂[0, 1]. Therefore, the first order optimality for491

Equation (7) requires that492

2γ(ct−1
1 − ct−1

2 ) + γ

t−1∑
s=1

cs1 + cs−1
1 − (cs2 + cs−1

2 )− 1

xt
1

+
1

1− xt
1

= 0 (12)
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Using the same reasoning for the BTRL updates in Equation (4)493

γ(ct1 − ct2) + γ(ct−1
1 − ct−1

2 ) + γ

t−1∑
s=1

(cs1 + cs−1
1 )− (cs2 + cs−1

2 )− 1

yt1
+

1

1− yt1
= 0. (13)

Now, subtracting Equation (12) to Equation (13), we obtain494

γ(ct1 − ct2 − ct−1
1 + ct−1

2 )− 1

yt1
+

1

xt
1

+
1

1− yt1
− 1

1− xt
1

= 0

that implies495

γ(ct1 − ct2)− γ(ct−1
1 − ct−1

2 ) = (yt1 − xt
1)

(
1

xt
1y

t
1

+
1

(1− yt1)(1− xt
1)

)
︸ ︷︷ ︸

A(xt
1,y

t
1)

.

Therefore, we can express the difference between the updates as a function of the costs according to496

the following formula497

yt1 − xt
1 = γA−1(xt

1, y
t
1)
(
(ct1 − ct2)− (ct−1

1 − ct−1
2 )

)
. (14)

We conclude the proof by establishing that498 ∣∣A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1 )

∣∣ ≤ O(γ).
By Lemma A.3 we are ensured that499

• |xt
1 − yt1| ≤ 8γ500

• |xt
1 − xt+1

1 | ≤ 16γ501

•
∣∣yt1 − yt+1

1

∣∣ ≤ 8γ502

In case γ ≤ 1/(16 · 8) we are ensured that the conditions of Lemma A.4 are satisfied (B ≤ 1/8) and503

thus504 ∣∣A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1 )

∣∣ ≤ 192(
∣∣xt

1 − xt+1
1

∣∣+ ∣∣yt1 − yt+1
1

∣∣)
Combining the latter with the guarantees of Lemma A.4 we get that505 ∣∣A−1(xt

1, y
t
1)−A−1(xt+1

1 , yt+1
1 )

∣∣ ≤ 192 · 24γ

506
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B Omitted proofs for the n dimensional case.507

B.1 Auxiliary Lemmas508

Corollary B.1. i) Q(s, π, c) = q(s, π, c)⊤ · π(s) ii) c⊤xπ = Q(root, π, c).509

Proof. For fact i) for any s ∈ Level(h), we have that510

Q(s, π, c) =
∑
i∈L

Pr(s, i, π)ci

=
∑
i∈L

π(ℓ(s)|s)Pr(ℓ(s), i, π)ci +
∑
i∈L

π(r(s)|s)Pr(r(s), i, π)ci

= π(ℓ(s)|s)
∑
h∈L

Pr(ℓ(s), i, π)ci + π(r(s)|s)
∑
i∈L

Pr(r(s), i, π)ci

= π(ℓ(s)|s)Q(ℓ(s), π, c) + π(r(s)|s)Q(r(s), π, c)

= q(s, π, c)⊤ · π(s)
where the second last equality uses the fact that s ∈ Level(h) =⇒ ℓ(s), r(s) ∈ Level(h+ 1).511

Finally, fact ii) follows trivially from the definition of xπ . Indeed, we have that512

c⊤ · xπ =
∑
i∈L

xπ(i)ci =
∑
i∈L

Pr(root, i, π)ci = Q(root, π, c)

513

B.2 Proof of Lemma 3.8514

Lemma 3.8. Let a leaf node i ∈ L and let p = (root = s1, . . . , sH = i) denotes the path from the515

root to i. Then the following holds,516

T∑
t=1

(ct + ct−1)⊤ · xπt

− 2

T∑
t=1

cti ≤
∑
sℓ∈p

Rloc(sℓ)

Proof. By Item 2 of Corollary B.1 and the fact that c0 = 0, we get517

T∑
t=1

(ct + ct−1)⊤ · xπt

− 2

T∑
t=1

cti =

T∑
t=1

(
Q(root, πt, ct) +Q(root, πt, ct−1)−Q(i, πt, ct)−Q(i, πt, ct−1)

)
=

T∑
t=1

H−1∑
ℓ=1

(
Q(sℓ, π

t, ct) +Q(sℓ, π
t, ct−1)−Q(sℓ+1, π

t, ct)−Q(sℓ+1, π
t, ct−1)

)
=

T∑
t=1

H−1∑
ℓ=1

(
Q(sℓ, π

t, ct) +Q(sℓ, π
t, ct−1))

)
− min

α∈{ℓ(sℓ),r(sℓ)}

T∑
t=1

(
Q(α, πt, ct) +Q(α, πt, ct−1)

)
=

T∑
t=1

H−1∑
ℓ=1

(
q(sℓ, π

t, ct) + q(sℓ, π
t, ct−1)

)⊤ · πt(sℓ)

− min
α∈{ℓ(sℓ),r(sℓ)}

T∑
t=1

(
Q(α, πt, ct) +Q(α, πt, ct−1)

)
Corollary B.1

=
∑
sℓ∈p

Rloc(sℓ)

518
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B.3 Proof of Lemma 3.9519

Lemma 3.9. Let π1, . . . , πT the policies produced by Algorithm 3 then for any state s ∈ V ,520

i) ∥πt(s)− πt−1(s)∥1 ≤ 48γ and ii) ∥q(s, πt, ct−1)− q(s, πt−1, ct−1)∥∞ ≤ 48γ log n.521

Proof. We first establish that ∥πt(s)− πt−1(s)∥1 ≤ 48γ.522

Let Q̄(s, π, c) := Q(ℓ(s), π, c)−Q(r(s), π, c) then policy update in Step 6 of Algorithm 3 admits523

the following one dimensional form,524

πt(ℓ(s)|s) = argmin
x∈[0,1]

[
2γ(Q̄(s, πt, ct) + Q̄(s, πt, ct−1)) + γ

t−1∑
τ=1

(Q̄(s, πτ , cτ ) + Q̄(s, πτ , cτ−1)) +R(x)

]
.

Similarly for the policy πt−1,525

πt−1(ℓ(s)|s) = argmin
x∈[0,1]

[
2γ(Q̄(s, πt−1, ct−1) + Q̄(s, πt−1, ct−2)) + γ

t−2∑
τ=1

(Q̄(s, πτ , cτ ) + Q̄(s, πτ , cτ−1)) +R(x)

]
.

Using Lemma A.2 we get that,526 ∣∣πt(ℓ(s)|s)− πt−1(ℓ(s)|s)
∣∣ = 2γ

∣∣∣∣2Q̄(s, πt, ct) + 2Q̄(s, πt, ct−1) + Q̄(s, πt−1, ct−1) + Q̄(s, πt−1, ct−2)

− 2Q̄(s, πt−1, ct−1)− 2Q̄(s, πt−1, ct−2)

∣∣∣∣ ≤ 24γ

where the last inequality comes from the fact that −1 ≤ Q(s, π, c) ≤ 1 and thus
∣∣Q̄(s, π, c)

∣∣ ≤ 2.527

Up next we establish that528

∥q(s, πt, ct−1)− q(s, πt−1, ct−1)∥∞ ≤ 48γ log n.

To simplify notation we prove that ∥q(s0, πt, ct−1)− q(s0, π
t−1, ct−1)∥∞ ≤ 48γ log n where h0529

denotes the depth of state s0 ∈ V .530

In order to prove the latter we deploy a coupling argument by considering two correlated random531

walks (s0, s0), (s1, s′1), . . . , (sH , s′H) where both walks are initialized at (s0, s0) while at each level532

h ∈ {h0, . . . ,H − 1}, the first walk marginally follows policy π ∈ ∆2 while the second walk533

marginally follows π′ ∈ ∆2.534

More precisely, let (sh, s′h) the pair of nodes visited respectively by the first and the second walk at535

level h ∈ {h0, . . . ,H−1}. Then the next pair of nodes (sh, s′h) follow the following joint probability536

distribution.537

• In case s′h ̸= sh: The next pair of nodes (sh+1, s
′
h+1) are independent random variables538

respectively following π(sh) ∈ ∆2 and π′(s′h) ∈ ∆2. More precisely,539

sh+1 =

{
ℓ(sh) w.p. π(ℓ(sh)|sh)
r(sh) w.p. 1− π(ℓ(sh)|sh)

and s′h+1 =

{
ℓ(s′h) w.p. π′(ℓ(s′h)|s′h)
r(s′h) w.p. 1− π′(ℓ(s′h)|s′h)

• In case sh = s′h = s and π(ℓ(s)|s) ≤ π′(ℓ(s)|s): Then the next pair of nodes (sj , s′h) fol-540

lows the joint probability distribution,541

(sh+1, s
′
h+1) =


(ℓ(s), ℓ(s)) w.p. π(ℓ(s)|s)
(r(s), ℓ(s)) w.p. π′(ℓ(s)|s)− π(ℓ(s)|s)
(r(s), r(s)) w.p. 1− π′(ℓ(s)|s)

• In case sh = s′h = s and π(ℓ(s)|s) ≥ π′(ℓ(s)|s): Then the next pair of nodes (sj , s′h) fol-542

lows the joint probability distribution,543

(sh+1, s
′
h+1) =


(ℓ(s), ℓ(s)) w.p. π′(ℓ(s)|s)
(ℓ(s), r(s)) w.p. π(ℓ(s)|s)− π′(ℓ(s)|s)
(r(s), r(s)) w.p. 1− π(ℓ(s)|s)
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The above joint random walk, guarantees that the first random walk (resp. the second) follows policy544

π (resp. π′ for the second coordinate). More precisely,545

Pr [sh+1 = ℓ(s) | sh = s] = π(ℓ(s)|s) and Pr
[
s′h+1 = ℓ(s) | s′h = s

]
= π′(ℓ(s)|s)

As a result,546

E [ci − ci′ ] = Q(s0, π, c)−Q(s0, π
′, c)

where (i, i′) ∈ L × L denotes the pair of leaves reached by the joint random walk initialized at547

s0 ∈ V/L.548

|Q(s0, π, c)−Q(s0, π
′, c)| = |E [ci − ci′ ]| ≤ E [|ci − ci′ |]

=

H−1∑
h=h0

∑
s∈Level(h)

E
[
|ci − ci′ | |s′h+1 ̸= sh+1, s

′
h = sh = s

]
P
[
s′h+1 ̸= sh+1, s

′
h = sh = s

]
≤ 2

H−1∑
h=h0

∑
s∈Level(h)

P
[
s′h+1 ̸= sh+1, s

′
h = sh = s

]
= 2

H−1∑
h=h0

∑
s∈Level(h)

P
[
s′h+1 ̸= sh+1|s′h = sh = s

]
P [s′h = sh = s]

≤ 2

H−1∑
h=h0

∑
s∈Level(h)

|π(ℓ(s)|s)− π′(ℓ(s)|s)|P [s′h = sh = s]

where in the second equality we used the fact that
{
s′h+1 ̸= sh+1, s

′
h = sh = s

}
s∈V,h∈[H]

are disjoint549

events.550

By setting π′ = πt and π = πt−1 we get that551

∣∣Q(s0, π
t, c)−Q(s0, π

t−1, c)
∣∣ ≤ 2

H−1∑
h=h0

∑
s∈Level(h)

∣∣πt(ℓ(s)|s)− πt−1(ℓ(s)|s)
∣∣P [s′h = sh = s]

≤ 48γ

H−1∑
h=h0

∑
s∈Level(h)

P [s′h = sh = s]

= 48γ

H−1∑
h=h0

1 = 48γ log n

Finally,552

∥q(s0, πt, ct−1)− q(s0, π
t−1, ct−1)∥∞ = max

α∈{ℓ(s0),r(s0)}

∣∣Q(α, πt, ct−1)−Q(α, πt−1, ct−1)
∣∣ ≤ 48γ log n.

553

B.4 Proof of Lemma 3.10554

Lemma 3.10. Let γ := O
(
log1/3 T/(T 1/3 log1/3 n)

)
in Algorithm 3 then RT

loc(s) ≤555

O
(
log2/3 T · log1/3 n · T 1/3

)
for all s ∈ V .556

Proof. Let the step-size γ > 0 of Algorithm 3 defined as γ := 1
32·8

(
log(T )
T logn

) 1
3

. Let us also introduce557

the BTRL update for state s that is558

π̃t(s) := argmin
x∈∆2

[
t∑

τ=1

(
q(s, πτ , cτ−1) + q(s, πτ , cτ )

)⊤
x+R(x)/γ

]
(15)
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We can bound two separate sources of regret, according to the decomposition559

RT
loc(s) =

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · π̃t(s)− min
α∈{ℓ(s),r(s)}

T∑
t=1

(
Q(α, πt, ct) +Q(α, πt−1, ct)

)
︸ ︷︷ ︸

Term I

+

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)

︸ ︷︷ ︸
Term II

(16)

First, we recognize that Term I is the BTRL local regret, therefore applying Lemma 3.2, we have560

Term I ≤ O
(
log T

γ

)

Then, it remains to bound the term that quantifies the closeness between πt and π̃t, that is561

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)

Let Q̄(s, π, c) := Q(ℓ(s), π, c)−Q(r(s), π, c) then by using Corollary B.1 we get that562

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤·(πt(s)− π̃t(s)
)
=

T∑
t=1

[
Q̄(s, πt, ct) + Q̄(s, πt, ct−1)

]
·
[
πt(ℓ(s)|s)− π̃t(ℓ(s)|s)

]
(17)

At the same time by Lemma 3.3 we get that563

πt(ℓ(s)|s)− π̃t(ℓ(s)|s) = γ
Q̄(s, πt, ct)− Q̄(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
(18)

Hence combining Equation 17 with Equation 18 we obtain564

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)
= γ

T∑
t=1

Q̄2(s, πt, ct)− Q̄2(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

At this point, we notice that unfortunately we can not rearrange the sum easily because of the term565

Q̄2(s, πt, ct−1) that depends on both indices t and t− 1. To go around this issue, we add and subtract566

the term Q̄2(s,πt−1,ct−1)
A(πt(ℓ(s)|s),π̃t(ℓ(s)|s)) ,567

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)
= γ

T∑
t=1

Q̄2(s, πt, ct)− Q̄2(s, πt−1, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

+ γ

T∑
t=1

Q̄2(s, πt−1, ct−1)− Q̄2(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
.

(19)

Now we bound the first term. Notice that the assumption of Lemma A.4 are satisfied with B = 32γ568

and that γ ≤ (8 · 32)−1 ensures B ≤ 1
8 . , Therefore, rearranging the sum and invoking Lemma A.4569

20



for x = πt, y = π̃t, x′ = πt+1, y′ = π̃t+1, we get570

γ

T∑
t=1

Q̄2(s, πt, ct)− Q̄2(s, πt−1, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
= γ

T−1∑
t=1

(
Q̄2(s, πt, ct)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
− Q̄2(s, πt, ct)

A(πt+1(ℓ(s)|s), π̃t+1(ℓ(s)|s))

)
+ γ

Q̄2(s, πT , cT )

A(πT (ℓ(s)|s), π̃T (ℓ(s)|s))

= γ

T−1∑
t=1

(
1

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
− 1

A(πt+1(ℓ(s)|s), π̃t+1(ℓ(s)|s))

)
Q̄2(s, πt, ct)

+ γ
Q̄2(s, πT , cT )

A(πT (ℓ(s)|s), π̃T (ℓ(s)|s))
Lemma A.4
≤ 192γ

T−1∑
t=1

Q̄2(s, πt, ct)
(∣∣πt(ℓ(s)|s)− πt+1(ℓ(s)|s)

∣∣+ ∣∣π̃t(ℓ(s)|s)− π̃t+1(ℓ(s)|s)
∣∣)

+ γQ̄2(s, πT , cT )
∣∣A−1(πT (ℓ(s)|s), π̃T (ℓ(s)|s))

∣∣
Lemma A.3
≤ 192γ

T−1∑
t=1

Q̄2(s, πt, ct) (24γ + 4γ) + γQ̄2(s, πT , cT )
∣∣A−1(πT (ℓ(s)|s), π̃T (ℓ(s)|s))

∣∣
≤ 4 · 192 · 28γ2T + 32γ

where in the last inequality we used Q̄2(s, πt, ct) ≤ 4 ∀t and A(πT (ℓ(s)|s), π̃T (ℓ(s)|s)) ≥ 1
8 .571

Then, for the second term in Equation (19), we use the second fact of Lemma 3.9. In more details,572

we have that573

γ

T∑
t=1

Q̄2(s, πt−1, ct−1)− Q̄2(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

= γ

T∑
t=1

(
Q̄(s, πt−1, ct−1) + Q̄(s, πt, ct−1)

)
·
(
Q̄(s, πt−1, ct−1)− Q̄(s, πt, ct−1)

)
A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

≤ γ

T∑
t=1

∣∣Q̄(s, πt−1, ct−1) + Q̄(s, πt, ct−1)
∣∣︸ ︷︷ ︸

≤4

∣∣Q̄(s, πt−1, ct−1)− Q̄(s, πt, ct−1)
∣∣ ∣∣A−1(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

∣∣︸ ︷︷ ︸
≤8

≤ 32γ

T∑
t=1

∣∣Q̄(s, πt−1, ct−1)− Q̄(s, πt, ct−1)
∣∣

Lemma 3.9
≤ 32 · 48γ2T log n.

Therefore
Term II ≤ 4 · 192 · 28γ2T + 32 · 48γ2T log n+ 32γ.

Therefore, neglecting constants, and plugging in the bounds in Equation (16), we obtain574

RT
loc(s) ≤ O

(
log T

γ
+ γ2T log n

)
Therefore by our selection of γ := O

(
log1/3 T/(T 1/3 log1/3 n)

)
we get575

RT
loc(s) ≤ O

(
(log(T ))

2
3 (log n)

1
3T

1
3

)
576

B.5 Proof of Therem 2.3577

Theorem 2.3. Let D be the n-dimensional simplex, D = ∆n. There exists an online learning578

algorithm A (Algorithm 3) such that for any cost-vector sequence c1, . . . , cT ∈ [−1, 1]n,579

T∑
t=1

(ct−1 + ct)⊤xt − min
x∗∈D

T∑
t=1

(ct−1 + ct)⊤x∗ ≤ O
(
T 1/3 · log4/3 (nT )

)

21



where xt = At(c
1, . . . , ct−1).580

Proof. By Lemma 3.8 we obtain thatRalt(T ) ≤ Hmaxs∈V RT
loc(s)581

Then, recalling that by construction H = log n and using the bound onRT
loc(s) in Lemma 3.10 gives582

Ralt(T ) ≤ (log n) · O
(
(log(T ))

2
3 (log n)

1
3T

1
3

)
= O

(
(log(T ))

2
3 (log n)

4
3T

1
3

)
583

C Omitted Proof of Section 4584

In this section we present the omitted proofs of Section 4.585

C.1 Proof of Lemma 4.1586

To simplify notation we denote ĉt := ct+ct−1 for t ≥ 1 where c0 = (0, . . . , 0). Moreover we denote587

with ∥·∥ the euclidean norm ∥·∥2. Adaptive FTRL (Algorithm 5) admits the following equivalent588

form.589

Algorithm 5 Adaptive FTRL

1: for round t = 1, . . . , T do

2: The learner computes r0:t−1 ←
√
1 +

∑t−1
s=1 ∥ĉs∥

3: The learner plays wt ← argmin∥x∥≤1

[∑t−1
s=1 ĉ

⊤
t x+ r0:t−1

2 ∥x∥2
]

4: The adversary selects cost ĉt with ∥ĉt∥2 ≤ 2 and the learner receives cost ĉ⊤t · xt.
5: end for

Lemma C.1 ([5]). Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL590

given as input the cost-vector sequence ĉ1, . . . , ĉT and x∗ := argminx∈B(0,1)

[∑T
t=1 ĉ

⊤
t x
]
. Then591

for any index S ∈ [T ],592

S∑
t=1

ĉ⊤t (wS+1 − x∗) +

T∑
t=S+1

ĉ⊤t (wt − x∗) ≤ r0:S
2

(
∥x∗∥2 − ∥wS+1∥2

)
+

T∑
t=S+1

[rt
2

(
∥x∗∥2 − ∥wt+1∥2

)]
+

T∑
t=S+1

ĉ⊤t (wt − wt+1)

where rt = r0:t − r0:t−1 for t ≥ 1.593

Proof. Let ft(x) := ĉ⊤t x + rt
2 ∥x∥

2 where r0 = 1 and ĉ0 = 0. Let us also define f0:t(x) :=594 ∑t
t=0 ft(x). Since ĉ0 = 0 we get that f0:t(x) =

∑t
s=1 ĉ

⊤
s x + r0:t

2 ∥x∥
2 and thus wt+1 :=595

argminx∈B(0,1)f0:t(x). Then,596

f0:T (x
∗) ≥ f0:T (wT+1)

= fT (wT+1) + f0:T−1(wT+1)

≥ fT (wT+1) + f0:T−1(wT )

≥
T∑

t=S+1

ft(wt+1) + f0:S(wS+1)

As a result we get that,597

T∑
t=0

(
ĉ⊤t x

∗ +
rt
2
∥x∗∥2

)
≥

T∑
t=S+1

(
ĉ⊤t wt+1 +

rt
2
∥xt+1∥2

)
+

S∑
t=0

(
ĉ⊤t wt+1 +

rt
2
∥wS+1∥2

)

22



By rearranging the terms and using the fact that ĉ0 = 0 and r0 = 1 we get that,598

S∑
t=1

ĉ⊤t (wS+1 − x∗) +

T∑
t=S+1

ĉ⊤t (wt − x∗) ≤ r0:S
2

(
∥x∗∥2 − ∥wS+1∥2

)
+

T∑
t=S+1

[rt
2

(
∥x∗∥2 − ∥wt+1∥2

)]
+

T∑
t=S+1

ĉ⊤t (wt − wt+1)

599

Lemma C.2 ([6]). Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL600

given as input the cost-vector sequence ĉ1, . . . , ĉT and x∗ := argminx∈B(0,1)

[∑T
t=1 ĉ

⊤
t x
]
. Then,601

T∑
t=1

ĉ⊤t wt −
T∑

t=1

ĉ⊤t x
∗ ≤ 4.5

√√√√1 +

T∑
t=1

∥ĉt∥2

Proof. Applying Lemma C.1 with S = 0 we get that,602

T∑
t=1

ĉ⊤t (wt − x∗) ≤
T∑

t=1

rt
2

(
∥x∗∥2 − ∥wt+1∥2

)
+

T∑
t=1

ĉ⊤t (wt − wt+1) (20)

≤ r0:T
2

+

T∑
t=1

ĉ⊤t (wt − wt+1) (21)

≤ 0.5

√√√√1 +

T∑
t=1

∥ĉt∥2 +
T∑

t=1

ĉ⊤t (wt − wt+1) (22)

Up next we bound the second term. Let ft(x) := ĉ⊤t x+
rt
2 . By Lemma 7 in [27] for f1 := f0:t−1 and603

f2 := f0:t. Since f1 is 1-strongly convex with respect to the norm r0:t−1∥x∥2 and f2 − f1 is convex604

and 2∥ct∥-Lipschitz. Then since wt := argminx∈B(0,1)f1(x) and wt+1 := argminx∈B(0,1)f2(x),605

Lemma 7 in [27] implies that606

∥wt − wt+1∥ ≤
2∥ĉt∥
r0:t−1

≤ 2∥ĉt∥√
1 +

∑t−1
s=1 ∥ĉs∥2

As a result, we get that607

ĉ⊤t (wt − wt+1) ≤ ∥ĉt∥∥wt − wt+1∥ ≤
2∥ĉt∥√

1 +
∑t−1

s=1 ∥ĉs∥2
≤ 2∥ĉt∥√

1 +
∑t

s=1 ∥ĉs∥2

Summing from t = 1 to T , we get that608

T∑
t=1

ĉ⊤t (wt − wt+1) ≤ 4

√√√√1 +

T∑
t=1

∥ĉt∥2

609

Lemma C.3. Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL given as610

input the cost-vector sequence ĉ1, . . . , ĉT . Let any round t∗ ∈ [T ] such that for all t ≥ t∗ + 1,611

∥
t∑

s=1

ĉs∥ ≥
1

4
∥ĉs∥2 and

t∑
s=1

∥ĉs∥2 ≥ 17

Then ∥wt∥ = 1 for all t ≥ t∗ + 1 and additionally,612

T−1∑
t=t∗

ĉ⊤t · (wt − wt+1) ≤ log (1 + T ) .
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Proof. To simplify notation we denote σ̂t := ∥ĉt∥2 Moreover we denote ĉ1:t =
∑t

s=1 ĉs and613

σ̂1:t =
∑t

s=1 σ̂s. By the definition of t∗ ∈ [T ] we know that for all t ≥ t∗ + 1,614

∥ĉ1:t∥√
1 + σ̂1:t

≥ σ̂1:t

4
√
1 + σ̂1:t

≥ 1

where the last inequality follows by the fact that σ1:t ≥ 17. Since wt ∈ B(0, 1) the latter implies that615

∥wt∥ = 1 for all t ≥ t∗ + 1 and thus,616

wt = −
ĉ1:t−1

∥ĉ1:t−1∥
and wt+1 = − ĉ1:t

∥ĉ1:t∥
617

∥wt − wt+1∥ = ∥ ĉ1:t−1

∥ĉ1:t−1∥
− ĉ1:t
∥ĉ1:t∥

∥

≤ ∥ ĉ1:t−1

∥ĉ1:t−1∥
− ĉ1:t−1

∥ĉ1:t∥
∥+ ∥ ĉ1:t−1

∥ĉ1:t∥
− ĉ1:t
∥ĉ1:t∥

∥

≤ ∥ĉ1:t−1∥ · ∥
1

∥ĉ1:t−1∥
− 1

∥ĉ1:t∥
∥+ ∥ĉt∥
∥ĉ1:t∥

≤ ∥ĉ1:t∥ − ∥ĉ1:t−1∥
∥ĉ1:t∥

+
∥ĉt∥
∥ĉ1:t∥

≤ 2
∥ĉt∥
∥ĉ1:t∥

where the last inequality follows by the triangle inequality, ∥ĉ1:t∥ ≤ ∥ĉ1:t−1∥+ ∥ĉt∥. As a result,618

∥wt − wt+1∥ ≤
2∥ĉt∥
∥ĉ1:t∥

≤ 8∥ĉt∥
σ̂1:t

where the last inequality follows by the fact that t ≥ t∗ + 1 and thus ∥ĉ1:t∥ ≥ 1
4 σ̂1:t. Finally we get619

that,620

T∑
t=t∗+1

ĉ⊤t (wt − wt+1) ≤
T∑

t=t∗+1

∥ĉt∥∥wt − wt+1∥

≤
T∑

t=t∗+1

8∥ĉt∥2

1 + σ̂1:t

≤
T∑

t=t∗+1

8σ̂t

1 + σ̂1:t

≤ log

(
1 +

T∑
t=t∗+1

σ̂t

)
≤ log (1 + T )

621

We conclude the section with the proof of Lemma 4.1. We restate the theorem so as to be consistent622

with the notation of the section.623

Lemma 4.1. Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL given as624

input the cost-vector sequence ĉ1, . . . , ĉT . Let t1 denote the maximum index such that625

t1∑
t=1

ĉ⊤t wt ≥ −
1

4

t1∑
t=1

∥ĉt∥2.

Then the followig holds,626

T∑
t=1

ĉ⊤t wt − min
x∈B(0,1)

T∑
t=1

ĉ⊤t x ≤ 4

√√√√1 +

t1∑
t=1

∥ĉt∥2 +O (log T )
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Proof. Let t2 denotes the maximum index such that
∑t

s=1 ĉ
⊤
s ws ≤ −∥ĉ1:t∥ and t3 the maximum627

index such that σ̂1:t ≤ 17 (as in the proof of Lemma C.3). We consider the following 3 mutually628

exclusive case,629

• t2 ≥ max(t1, t3):630

Due to the fact that t2 ≥ t1 we have that for any t ≥ t2 + 1,631

−∥ĉ1:t∥ ≤
t∑

s=1

ĉ⊤s ws ≤ −
1

4
σ̂1:t

where the first inequality follows by the definition of t2 while the second by the definition632

of t1,
∑t

s=1 ĉ
⊤
s ws ≤ − 1

4 σ̂1:t for all t ≥ t1 + 1. Since t2 ≥ t3 we additionally get that633

σ̂1:t ≥ 17 for all t ≥ t2 + 1. As a result,634

∥ĉ1:t∥ ≥
1

4
σ̂1:t and σ̂1:t ≥ 17 for all t ≥ t2 + 1

Meaning that the conditions of Lemma C.3 are satisfied for all t ≥ t2 + 1 and thus635

T∑
t=t2+1

ĉ⊤t (wt − wt+1) ≤ log (1 + T ) and ∥wt∥ = 1 for all t ≥ t2 + 1 (23)

Up next we analyze the regret of Adaptive FTRL,636

T∑
t=1

ĉ⊤t (wt − x∗) =

t2∑
t=1

ĉ⊤t (wt − x∗) +

T∑
t=t2+1

ĉ⊤t (wt − x∗) (24)

=

t2∑
t=1

ĉ⊤t (wt − xt2+1) +

t2∑
t=1

ĉ⊤t (wt2+1 − x∗)

+

T∑
t=t2+1

ĉ⊤t (wt − x∗) (25)

≤ −∥ĉ1:t2∥ −
t2∑
t=1

ĉ⊤t xt2+1 +

t2∑
t=1

ĉ⊤t (xt2+1 − x∗)

+

T∑
t=t2+1

ĉ⊤t (wt − x∗) (26)

≤
t2∑
t=1

ĉ⊤t (wt2+1 − x∗) +

T∑
t=t2+1

ĉ⊤t (wt − x∗) (27)

≤ r0:t2
2

(∥x∗∥2 − ∥wt2+1∥2)

+

T∑
t=t2+1

rt
2
(∥x∗∥2 − ∥wt+1∥2) +

T∑
t=t2+1

ĉ⊤t (wt − wt+1) (28)

=
r0:t2
2

(∥x∗∥2 − 1) +

T∑
t=t2+1

rt
2
(∥x∗∥2 − 1)

+

T∑
t=t2+1

ĉ⊤t (wt − wt+1) (29)

≤
T∑

t=t2+1

ĉ⊤t (wt − wt+1) ≤ log (1 + T ) (30)

where Inequality (9) follows by the definition of t2 i.e.
∑t2

t=1 ĉ
⊤
t x

t ≤ −∥ĉ1:t2∥. Inequal-637

ity (10) follows by the fact that
∑t2

t=1 ĉ
⊤
t xt2+1 ≥ −ĉ1:t2 . Inequality (11) follows by638

applying Lemma C.1 for S := t2. Equality (12) and Inequality (13) follow by Equation 23.639
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• t1 ≥ max(t2, t3): By using the exact same arguments as above we can establish that640

T∑
t=t2+1

ĉ⊤t (x
t − xt+1) ≤ log (1 + T ) and ∥xt∥2 = 1 for all t ≥ t1 + 1 (31)

Using the exact same arguments as above we conclude that641

T∑
t=1

ĉ⊤t (wt − x∗) =

t1∑
t=1

ĉ⊤t (wt − x∗) +

T∑
t=t1+1

ĉ⊤t (wt − x∗)

=

t1∑
t=1

ĉ⊤t (wt − wt1+1) +

t1∑
t=1

ĉ⊤t (wt1+1 − x∗) +

T∑
t=t1+1

ĉ⊤t (wt − x∗)

≤ 4.5
√
1 + σ̂1:t1 ++

t1∑
t=1

ĉ⊤t (wt1+1 − x∗) +

T∑
t=t1+1

ĉ⊤t (wt − x∗)

≤ 4.5
√
1 + σ1:t1 + log(1 + T )

where the first inequality follows by applying Lemma C.2 for T = t1 and the second by642

repeating Inequalities (11)− (15).643

• t2 ≥ max(t1, t3): By the exact same arguments as in the previous case,644

T∑
t=1

ĉ⊤t (wt − x∗) ≤ 4.5
√
1 + σ1:t3 + log (1 + T ) ≤ 4.5

√
18 + log (1 + T )

where the last inequality follows by the fact that σ1:t3 ≤ 17 (definition of t3).645

As a result, we have established that in any case,646

T∑
t=1

ĉ⊤t (wt − x∗) ≤ 4.5

√√√√1 +

t1∑
t=1

∥ĉt∥22 + log (1 + T ) + 4.5
√
18

647

C.2 Proof of Lemma 4.3648

To simplify notation we summarize the Step 7 of Algorithm 4 in Algorithm 6.649

Algorithm 6 OGD with Shrinking Domain

1: p1 ← 0, D1 ← [0, 1]

2: for t = 1 . . . T do
3: The learner plays pt ∈ Dt

4: The adversary selects zt and σt ≤ 1.

5: The learner updates the interval Dt ⊆ [0, 1] as follows,

Dt ←

0,min

1,
λ√

1 +
∑t

s=1 σs


and its actions pt+1 ∈ [0, 1] as follows

pt+1 ← [pt − ηt · zt]Dt

6: end for

Remark C.4. We remark that Algorithm 6 corresponds to Step 7 of Algorithm 4 once650

λ := 20, zt := (ct + ct−1)⊤ · (wt + ct−1) and σt := ∥ct + ct−1∥2
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Definition C.5. A sequence q1, . . . , qT ∈ [0, 1] is valid in hindsight if and only if there exists a round651

t∗ ∈ [T ] and a δ ∈ [0, 1] such that the following hold,652

1. qt = δ · I [t ≤ t1] (qt = δ for all t ≤ t∗ and qt = 0 for all t ≥ t∗ + 1).653

2. At the switching point t∗ ∈ [T ],654

δ2 ≤ λ2

1 +
∑t∗

t=1 σt

In Theorem C.6 we present the payoff guarantees of Algorithm 6 with respect to any sequence qt that655

is valid in hindsight.656

Theorem C.6 ([5]). Let p1, . . . , pT ∈ [0, 1] a sequence of points produced by Algorithm 6 given as657

input the sequence (z1, σ1), . . . , (zT , σT ). In case z2t ≤ 4σt for all rounds t ∈ [T ] then for any valid658

in hindsight sequence q1, . . . , qT ∈ [0, 1] (Definition C.5) the following holds,659

T∑
t=1

zt(pt − qt) ≤ λ

(
1 + 3 log

(
1 +

T∑
t=1

σt

))

We conclude the section with the proof of Lemma 4.3.660

Lemma 4.3. Let the sequence of cost-vector c1, . . . , cT given to Algorithm 4 and the produced661

sequences x1, . . . , xt ∈ ∆n and p1, . . . , pT ∈ (0, 1). Additionally let t1 denote the maximum time662

such that663
t∑

s=1

(cs + cs−1)⊤ · ws ≥ −
1

4

t∑
s=1

∥cs + cs−1∥22

and consider the sequence qt := I [t ≤ t1] ·
(
20/
√
400 +

∑t1
t=1 ∥ct + ct−1∥22

)
. Then the following664

holds,665

T∑
t=1

(ct−1 + ct)⊤(wt + ct−1) · qt −
T∑

t=1

(ct−1 + ct)⊤(wt + ct−1) · pt ≤ O(log T )

Proof. The sequence qt is a valid sequence with switching point t∗ := t1 and666

δ :=
20√

400 +
∑t1

t=1 ∥ct + ct−1∥22

Now the sequence pt produced by Algorithm 4 in Steps 7 and Steps 8 can be viewed as the output of667

Algorithm 6 with of the input sequence zt := (ct + ct−1)⊤ · (wt + ct−1) and σt := ∥ct + ct−1∥2.668

Since669

δ2 ≤ λ2

1 +
∑t∗

t=1 σt

Lemma 4.3 follows by Theorem C.6.670
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