
The Online Min-Sum Set Cover Problem

Dimitris Fotakis∗ Loukas Kavouras∗† Grigorios Koumoutsos‡

Stratis Skoulakis§ Manolis Vardas¶

Abstract

We consider the online Min-Sum Set Cover (MSSC), a natural and intriguing gener-
alization of the classical list update problem. In Online MSSC, the algorithm maintains
a permutation on n elements based on subsets S1, S2, . . . arriving online. The algorithm
serves each set St upon arrival, using its current permutation πt, incurring an access cost
equal to the position of the first element of St in πt. Then, the algorithm may update its
permutation to πt+1, incurring a moving cost equal to the Kendall tau distance of πt to
πt+1. The objective is to minimize the total access and moving cost for serving the entire
sequence. We consider the r-uniform version, where each St has cardinality r. List update
is the special case where r = 1.

We obtain tight bounds on the competitive ratio of deterministic online algorithms for
MSSC against a static adversary, that serves the entire sequence by a single permutation.
First, we show a lower bound of (r+1)(1− r

n+1) on the competitive ratio. Then, we consider
several natural generalizations of successful list update algorithms and show that they fail
to achieve any interesting competitive guarantee. On the positive side, we obtain a O(r)-
competitive deterministic algorithm using ideas from online learning and the multiplicative
weight updates (MWU) algorithm.

Furthermore, we consider efficient algorithms. We propose a memoryless online algo-
rithm, called Move-All-Equally, which is inspired by the Double Coverage algorithm for
the k-server problem. We show that its competitive ratio is Ω(r2) and 2O(

√
logn·log r), and

conjecture that it is f(r)-competitive. We also compare Move-All-Equally against the dy-
namic optimal solution and obtain (almost) tight bounds by showing that it is Ω(r

√
n) and

O(r3/2
√
n)-competitive.

∗National Technical University of Athens, Greece. fotakis@cs.ntua.gr,lukaskavouras@gmail.com. Dimitris
Fotakis is supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call
for H.F.R.I. Research Projects to support Faculty members and Researchers’ and the procurement of high-cost
research equipment grant”, project BALSAM, HFRI-FM17-1424.

†Supported by a scholarship from the State Scholarships Foundation, co-financed by Greece and the European
Union (European Social Fund-ESF).

‡Université libre de Bruxelles, Belgium. gregkoumoutsos@gmail.com. Supported by Fonds de la Recherche
Scientifique-FNRS Grant no MISU F 6001. Part of this work was carried out while visiting that National Technical
University of Athens (NTUA), supported by FNRS Mobility Grant no 35282070.

§Singapore University of Technology and Design. efstratios@sutd.edu.sg. Supported by NRF 2018 Fellow-
ship NRF-NRFF2018-07. Part of this work was carried out while the author was a PhD student at NTUA.

¶ETH Zurich. evardas@student.ethz.ch. This research was carried out while the author was an undergrad-
uate student at NTUA.

1

ar
X

iv
:2

00
3.

02
16

1v
2

 [
cs

.D
S]

 2
9

Ju
n

20
22

1 Introduction

In Min-Sum Set Cover (MSSC), we are given a universe U on n elements and a collection of
subsets S = {S1, . . . , Sm}, with St ⊆ U , and the task is to construct a permutation (or list)
π of elements of U . The cost π(St) of covering a set St (a.k.a. the cover time of St) with a
permutation π is the position of the first element of St in π, i.e., π(St) = min{i |π(i) ∈ St}.
The goal is to minimize the overall cost

∑
t π(St) of covering all subsets of S.

The MSSC problem generalizes various NP-hard problems such as Min-Sum Vertex Cover
and Min-Sum Coloring and it is well-studied. Feige, Lovasz and Tetali [25] showed that the
greedy algorithm, which picks in each position the element that covers the most uncovered sets,
is a 4-approximation (this was also implicit in [11]) and that no (4−ε)-approximation is possible,
unless P = NP. Several generalizations have been considered over the years with applications
in various areas (we discuss some of those problems and results in Section 1.2).

Online Min-Sum Set Cover. In this paper, we study the online version of Min-Sum Set
Cover. Here, the sets arrive online; at time step t, the set St is revealed. An online algorithm
is charged the access cost of its current permutation πt(St); then, it is allowed to change its
permutation to πt+1 at a moving cost equal to the number of inversions between πt and πt+1,
known as the Kendall tau distance dKT(πt, πt+1). The goal is to minimize the total cost, i.e.,∑

t

(
πt(St)+dKT(πt, πt+1)

)
. This is a significant generalization of the classic list update problem,

which corresponds to the special case where |St| = 1 for all sets St ∈ S.

Motivation. Consider a web search engine, such as Google. Each query asked might have many
different meanings depending on the user. For example, the query “Python” might refer to an
animal, a programming language or a movie. Given the pages related to “Python”, a goal of the
search engine algorithm is to rank them such that for each user, the pages of interest appear as
high as possible in the ranking (see e.g., [23]). Similarly, news streams include articles covering
different reader interests each. We want to rank the articles so that every reader finds an article
of interest as high as possible.The MSSC problem serves as a theoretical model for practical
problems of this type, where we want to aggregate disjunctive binary preferences (expressed
by the input sets) into a total order. E.g., for a news stream, the universe U corresponds to
the available articles and the sets St correspond to different user types. The cost of a ranking
(i.e., permutation on U) for a user type is the location of the first article of interest. Clearly, in
such applications, users arrive online and the algorithm might need to re-rank the stream (i.e.,
change the permutation) based on user preferences.

Benchmarks. For the most part, we evaluate the performance of online algorithms by com-
paring their cost against the cost of an optimal offline solution that knows the input in advance
and chooses an optimal permutation π. Note that this solution is static, in the sense that
it does not change permutations over time. This type of analysis, called static optimality, is
typical in online optimization and online learning. It was initiated in the context of adaptive
data structures by the landmark result of Sleator and Tarjan [44], who showed that splay trees
are asymptotically as fast as any static tree. Since then, it has been an established benchmark
for various problems in this area (see e.g. [13, 30]); it is also a standard benchmark for several
other problems in online optimization (e.g., online facility location [26, 37], minimum metric
matching [28,33,39], Steiner tree [38], etc.).

A much more general benchmark is the dynamic Min-Sum Set Cover problem, where the
algorithm is compared against an optimal solution allowed to change permutations over time.
This problem has not been studied even in the offline case. In this work, we define the problem
formally and obtain first results for the online case.

We remark that the online dynamic MSSC problem belongs to a rich class of problems called

1

Metrical Task Systems (MTS) [15]. MTS is a far-reaching generalization of several fundamental
online problems and provides a unified framework for studying online problems (we discuss this
in more detail in Section 1.2). Indeed, our results suggest that solving the online dynamic MSSC
requires the development of powerful generic techniques for online problems, which might have
further implications for the broader setting of MTS.

Throughout this paper, whenever we refer to online problems, like Min-Sum Set Cover or
list update, we assume the static case, unless stated otherwise.

Previous Work on List Update. Prior to our work, the only version of online MSSC studied
is the special case where |St| = 1 for all sets; this is the celebrated list update problem and it
has been extensively studied (an excellent reference is [14]). It is known that the deterministic
competitive ratio it least 2 − 2

n+1 and there are several 2-competitive algorithms known; most
notably, the Move-to-Front (MTF) algorithm, which moves the (unique) element of St to the
first position of the permutation, and the Frequency Count algorithm, which orders the elements
in decreasing order according to their frequencies.

The dynamic list update problem has also been extensively studied. MTF is known to be
2-competitive [43] and there are several other 2-competitive algorithms [1, 24].

1.1 Our Results

In this work, we initiate a systematic study of the online Min-Sum Set Cover problem. We
consider the r-uniform case, where all request sets have the same size |St| = r. This is without
loss of generality, as we explain in Section 1.3.

The first of our main results is a tight bound on the deterministic competitive ratio of Online
MSSC. We show that the competitive ratio of deterministic algorithms is Ω(r).

Theorem 1.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1)(1− r

n+1).

Note that for r = 1, this bound evaluates to 2− 2
n+1 , which is exactly the best known lower

bound for the list update problem.
We complement this result by providing a matching (up to constant factors) upper bound.

Theorem 1.2. There exists a (5r+2)-competitive deterministic online algorithm for the Online
Min-Sum Set Cover problem.

Interestingly, all prior work on the list update problem (case r = 1) does not seem to
provide us with the right tools for obtaining an algorithm with such guarantees! As we discuss
in Section 2, virtually all natural generalizations of successful list update algorithms (e.g., Move-
to-Front, Frequency Count) end up with a competitive ratio way far from the desired bound.
In fact, even for r = 2, most of them have a competitive ratio depending on n, such as Ω(

√
n)

or even Ω(n).
This suggests that online MSSC has a distinctive combinatorial structure, very different from

that of list update, whose algorithmic understanding calls for significant new insights. The main
reason has to do with the disjunctive nature of the definition of the access cost π(St). In list
update, where r = 1, the optimal solution is bound to serve a request St by its unique element.
The only question is how fast an online algorithm should upgrade it (and the answer is “as
fast as possible”). In MSSC, the hard (and crucial) part behind the design of any competitive
algorithm is how to ensure that the algorithm learns fast enough about the element et used
by the optimal solution to serve each request St. This is evident in the highly adaptive nature
of the deceptively simple greedy algorithm of [25] and in the adversarial request sequences for
generalizations of Move-to-Front, in Section 2.

2

To obtain the asymptotically optimal ratio of Theorem 1.2, we develop a rounding scheme
and use it to derandomize the multiplicative weights update (MWU) algorithm. Our analysis
bounds the algorithm’s access cost in terms of the optimal cost, but it does not account for
the algorithm’s moving cost. We then refine our approach, by performing lazy updates to the
algorithm’s permutation, and obtain a competitive algorithm for online MSSC.

We also observe (in Section 1.3) that based on previous work of Blum and Burch [12], there
exists a (computationally inefficient) randomized algorithm with competitive ratio 1+ε, for any
ε ∈ (0, 1/4). This implies that no lower bound is possible, if randomization is allowed, and gives
a strong separation between deterministic and randomized algorithms.

Memoryless Algorithms. While the bounds of Theorems 1.1 and 1.2 are matching, our al-
gorithm from Theorem 1.2 is computationally inefficient since it simulates the MWU algorithm,
which in turn, maintains a probability distribution over all n! permutations. This motivates the
study of trade-offs between the competitive ratio and computational efficiency. To this end, we
propose a memoryless algorithm, called Move-All-Equally (MAE), which moves all elements of
set St towards the beginning of the permutation at the same speed until the first reaches the
first position. This is inspired by the Double Coverage algorithm from k-server [20, 21]. We
believe that MAE achieves the best guarantees among all memoryless algorithms. We show
that this algorithm can not match the deterministic competitive ratio.

Theorem 1.3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

Based on Theorem 1.3, we conjecture that an O(r) guarantee cannot be achieved by a
memoryless algorithms. We leave as an open question whether MAE has a competitive ratio
f(r), or a dependence on n is necessary. To this end, we show that the competitive ratio of
MAE is at most 2O(

√
logn·log r) (see Section 4 for details).

Dynamic Min-Sum Set Cover. We also consider the dynamic version of online MSSC.
Dynamic MSSC is much more general and the techniques developed for the static case do not
seem adequately powerful. This is not surprising, since the MWU algorithm is designed to
perform well against the best static solution. We investigate the performance of the MAE
algorithm. First, we obtain an upper bound on its competitive ratio.

Theorem 1.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/2√n).

Although this guarantee is not very strong, we show that, rather surprisingly, it is essentially
tight and no better guarantees can be shown for this algorithm.

Theorem 1.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

This lower bound is based on a carefully crafted adversarial instance; this construction
reveals the rich structure of this problem and suggests that more powerful generic techniques
are required in order to achieve any f(r) guarantees. In fact, we conjecture that the lower bound
of Theorem 1.1 is the best possible (ignoring constant factors) even for the dynamic problem
and that using a work-function based approach such a bound can be obtained.

1.2 Further Related Work

Multiple Intents Re-ranking. This is a generalization of MSSC where for each set St, there
is a covering requirement K(St), and the cost of covering a set St is the position of the K(St)-th
element of St in π. The MSSC problem is the special case where K(St) = 1 for all sets St.

3

Another notable special case is the Min-Latency Set Cover problem, which corresponds to the
other extreme case where K(St) = |St| [29]. Multiple Intents Re-ranking was first studied by
Azar et. al. [5], who presented a O(log r)-approximation; later O(1)-approximation algorithms
were obtained [10,32,42]. Further generalizations have been considered, such as the Submodular
Ranking problem, studied by Azar and Gamzu [4], which generalizes both Set Cover and MSSC,
and the Min-Latency Submodular Cover, studied by Im et.al [31].

Prediction from Expert Advice and Randomized MSSC. In prediction from expert
advice, there are N experts and expert i incurs a cost cti in each step. A learning algorithm
decides which expert it to follow (before the cost vector ct is revealed) and incurs a cost of ctit .
The landmark technique for solving this problem is the multiplicative weights update (MWU -
a.k.a. Hedge) algorithm. For an in-depth treatment of MWU, we refer to [3, 27,35].

In the classic online learning setting, there is no cost for moving probability mass between
experts. However, in a breakthrough result, Blum and Burch [12] showed that MWU is (1 + ε)-
competitive against the best expert, even if there is a cost D for moving probability mass
between experts. By adapting this result to online MSSC (regarding permutations as experts),
we can get an (inefficient) randomized algorithm with competitive ratio (1+ε), for any constant
ε ∈ (0, 1/4). A detailed description is deferred to the full version of this paper.

Metrical Task Systems and Online Dynamic MSSC. The online dynamic Min-Sum Set
Cover problem belongs to a rich family of problems called Metrical Task Systems (MTS). In
MTS, we are given a set of N states and a metric function d specifying the cost of moving
between the states. At each step, a task arrives; the cost of serving the task at state i is ci. An
algorithm has to choose a state to process the task. If it switches from state i to state j and
processes the task there, it incurs a cost d(i, j) + cj . Given an initial state and a sequence of
requests, the goal is to process all tasks at minimum cost.

It is easy to see that the online version of dynamic MSSC problem is a MTS, where the
states correspond to permutations, thus N = n!, and the distance between two states is their
Kendall tau distance. For a request set St, the request is a vector specifying the cost π(St) for
every permutation π.

Several other fundamental online problems (e.g., k-server, convex body chasing) are MTS.
Although there has been a lot of work on understanding the structure of MTS problems [2, 8,
9,15,16,22,34,40,41], there is not a good grasp on how the structure relates to the hardness of
MTS problems. Getting a better understanding on this area is a long-term goal, since it would
lead to a systematic framework for solving online problems.

1.3 Preliminaries

Notation. Given a request sequence S = {S1, . . . , Sm}, for any algorithm ALG we de-
note Cost(ALG(S)) or simply Cost(ALG) the total cost of ALG on S. Similarly we denote
AccessCost(ALG) the total access cost of ALG and MovingCost(ALG) the total movement
cost of ALG. For a particular time step t, an algorithm using permutation πt incurs an access
cost AccessCost(ALG(t)) = πt(St). We denote by πt[j] the position of element j ∈ U in the
permutation πt.

Online Min-Sum Set Cover. We focus on the r-uniform case, i.e., when all sets St have size
r � n. This is essentially without loss of generality, because we can always let r = maxt |St|
and add the r − |St| last unrequested elements in the algorithm’s permutation to any set St
with |St| < r. Assuming that r ≤ n/2, this modification cannot increase the optimal cost and
cannot decrease the online cost by more than a factor of 2.

4

2 Lower Bounds on the Deterministic Competitive Ratio

We start with a lower bound on the deterministic competitive ratio of online MSSC.

Theorem 1.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1)(1− r

n+1).

For the proof, we employ an averaging argument, similar to those in lower bounds for list
update and k-server [36, 43]. In each step, the adversary requests the last r elements in the
algorithm’s permutation. Hence, the algorithm’s cost is at least (n− r + 1). Using a counting
argument, we show that for any fixed set St of size r and any i ∈ [n − r + 1], the number of
permutations π with access cost π(St) = i is

(
n−i
r−1

)
r!(n−r)! . Summing up over all permutations

and dividing by n!, we get that the average access cost for St is
(
n+1
r+1

) r!(n−r)!
n! = n+1

r+1 . Therefore,

the cost of the optimal permutation is a most (n+1)
r+1 , and the competitive ratio of the algorithm

at least (n−r+1)(r+1)
n+1 . The details can be found in Appendix A.

Lower Bounds for Generalizations of Move-to-Front. For list update, where r = 1,
simple algorithms like Move-to-Front (MTF) and Frequency Count achieve an optimal compet-
itive ratio. We next briefly describe several such generalizations of them and show that their
competitive ratio depends on n, even for r = 2. Missing details can be found in Appendix A.
MTFfirst: Move to the first position (of the algorithm’s permutation) the element of St ap-
pearing first in πt . This algorithm is Ω(n)-competitive when each request St consists of the last
two elements in πt. Then, the last element in the algorithm’s permutation never changes and
is used by the optimal permutation to serve the entire sequence!
MTFlast: Move to the first position the element of St appearing last in πt .
MTFall: Move to the first r positions all elements of St (in the same order as in πt).
MTFrandom: Move to the first position an element of St selected uniformly at random.

MTFlast, MTFall and MTFrandom have a competitive ratio of Ω(n) when each request St
consists of a fixed element e (always the same) and the last element in πt, because they all incur
an (expected for MTFrandom) moving cost of Θ(n) per request.

The algorithms seen so far fail for the opposite reasons: MTFfirst cares only about the first
element and ignores completely the second, and the others are very aggressive on using the
second (rth) element. A natural attempt to balance those two extremes is the following.
MTFrelative: Let i be the position of the first element of St in πt. Move to the first positions
of the algorithm’s permutation (keeping their relative order) all elements of St appearing up to
the position c · i in πt, for some constant c. The bad instance for this algorithm is when each
request St consists of the last element and the element at position bn/cc− 1 in πt; it never uses
the nth element and the adversary serves all requests with it at a cost of 1.

All generalizations of MTF above are memoryless and they all fail to identify the element by
which optimal serves St. The following algorithm tries to circumvent this by keeping memory
and in particular the frequencies of reqested elements.
MTFcount: Move to the first position the most frequent element of St (i.e., the element of St
appearing in most requested sets so far).

This algorithm behaves better in easy instances, however with some more work we can show a
lower bound of Ω(

√
n) on its competitive ratio. Let e1, . . . , en be the elements indexed according

to the initial permutation π0 and b =
√
n. The request sequence proceeds in m/n phases of

length n each. The first n − b requests of each phase are {e1, e2}, {e1, e3}, . . . , {e1, en−b}, and
the last b requests consist of en−b+i and the element at position n− b at the current algorithm’s
permutation, for i = 1, . . . , b. An optimal solution can cover all the requests by the elements
e1, en−b+1, . . . , en with total cost Θ(m+n

√
n). The elements en−b+1, . . . , en are never upgraded

by MTFcount. Hence, the algorithm’s cost is Θ(m
√
n).

5

3 An Algorithm with Asymptotically Optimal Competitive Ra-
tio

Next, we present algorithm Lazy-Rounding (Algorithm 2) and analyze its competitive ratio.
The following is the main result of this section:

Theorem 1.2. Deterministic online algorithm Lazy-Rounding, presented in Algorithm 2, is
(5r + 2)-competitive for the static version of the Online Min-Sum Set Cover problem.

The remainder of this section is devoted to the proof of Theorem 1.2. At a high-level, our
approach is summarized by the following three steps:

1. We use as black-box the multiplicative weights update (MWU) algorithm with learning
rate 1/n3. Using standard results from learning theory, we show that its expected access
cost is within a factor 5/4 of OPT, i.e., AccessCost(MWU) ≤ 5

4 Cost(OPT) (Section 3.1).

2. We develop an online rounding scheme, which turns any randomized algorithm A into
a deterministic one, denoted Derand(A), with access cost at most 2r · E[AccessCost(A)]
(Section 3.2). However, our rounding scheme does not provide any immediate guarantee
on the moving cost of Derand(A).

3. Lazy-Rounding is a lazy version of Derand(MWU) that updates its permutation only
if MWU’s distribution has changed a lot. A phase corresponds to a time interval that
Lazy-Rounding does not change its permutation. We show that during a phase:

(i) The upper bound on the access cost increases, compared to Derand(MWU), by a
factor of at most 2, i.e., AccessCost(Lazy-Rounding) ≤ 4r · E[AccessCost(MWU)]
(Lemma 3.6).

(ii) The (expected) access cost of MWU is at least n2. Since our algorithm moves only
once per phase, its movement cost is at most n2. Thus we get that (Lemma 3.7):

MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)] .

For the upper bound on the moving cost above, we relate how much MWU’s distribution
changes during a phase, in terms of the total variation distance, to the cost of MWU and
the cost of our algorithm.

Based on the above properties, we compare the access and the moving cost of Lazy-Rounding
against the access cost of MWU and to get the desired competitive ratio:

Cost(Lazy-Rounding) ≤ (4r + 1)E[AccessCost(MWU)] ≤ (5r + 2) Cost(OPT) .

Throughout this section we denote by dTV(δ, δ′) the total variation distance of two discrete
probability distributions δ, δ′ : [N]→ [0, 1], defined as dTV(δ, δ′) =

∑N
i=1 max{0, δ(i)− δ′(i)}.

3.1 Using Multiplicative Weights Update in Online Min-Sum Set Cover

In this section, we explain how the well-known MWU algorithm [27,35] is used in our context.

The MWU Algorithm. Given n! permutations of elements of U , the algorithm has a param-
eter β ∈ [0, 1] and a weight wπ for each permutation π ∈ [n!], initialized at 1. At each time step

6

the algorithm chooses a permutation according to distribution Ptπ = wtπ/(
∑

π∈[n!]w
t
π). When

request St arrives, MWU incurs an expected access cost of

E[AccessCost(MWU(t))] =
∑
π∈[n!]

Ptπ · π(St)

and updates its weights wt+1
π = wtπ · βπ(St), where β = e−1/n3

; this is the so-called learning rate
of our algorithm. Later on, we discuss the reasons behind choosing this value.

On the Access Cost of MWU. Using standard results from learning theory [27, 35] and
adapting them to our setting, we get that the (expected) access cost of MWU is bounded by
Cost(OPT). This is formally stated in Lemma 3.1 (and is proven in Appendix B).

Lemma 3.1. For any request sequence σ = (S1, . . . , Sm) we have that

E[AccessCost(MWU)] ≤ 5

4
· Cost(OPT) + 2n4 lnn .

On the Distribution of MWU. We now relate the expected access cost of the MWU algo-
rithm to the total variation distance among MWU’s distributions. More precisely, we show that
if the total variation distance between MWU’s distributions at times t1 and t2 is large, then
MWU has incurred a sufficiently large access cost. The proof of the following makes a careful
use of MWU’s properties and is deferred to Appendix B.

Lemma 3.2. Let Pt be the probability distribution of the MWU algorithm at time t. Then,

dTV(Pt,Pt+1) ≤ 1

n3
· E[AccessCost(MWU(t))].

The following is useful for the analysis of Lazy-Rounding. Its proof follows from Lemma 3.2
and the the triangle inequality and is deferred to Appendix B.

Lemma 3.3. Let t1 and t2 two different time steps such that dTV(Pt1 ,Pt2) ≥ 1/n. Then,

t2−1∑
t=t1

E[AccessCost(MWU(t))] ≥ n2 .

3.2 Rounding

Next, we present our rounding scheme. Given as input a probability distribution δ over per-
mutations, it outputs a fixed permutation ρ such that for each possible request set S of size r,
the cost of ρ on S is within a O(r) factor of the expected cost of the distribution δ on S. For
convenience, we assume that n/r is an integer. Otherwise, we use dn/re.

Algorithm 1 Greedy-Rounding (derandomizing probability distributions over the permuta-
tions)

Input: A probability distribution δ over [n!].
Output: A permutation ρ ∈ [n!].

1: R ← U
2: for i = 1 to n/r do
3: Si ← arg minS∈{R}r Eπ∼δ[π(S)]

4: Place the elements of Si (arbitrarily) from positions (i− 1) · r + 1 to i · r of ρ.
5: R← R \ Si
6: end for
7: return ρ

7

Our rounding algorithm is described in Algorithm 1. At each step, it finds the request S with
minimum expected covering cost under the probability distribution δ and places the elements
of S as close to the beginning of the permutation as possible. Then, it removes those elements
from set R and iterates. The main claim is that the resulting permutation has the following
property: any request S of size r has covering cost at most O(r) times of its expected covering
cost under the probability distribution δ.

Theorem 3.4. Let δ be a distribution over permutations and let ρ be the permutation output
by Algorithm 1 on δ. Then, for any set S, with |S| = r,

ρ(S) ≤ 2r · E
π∼δ

[π(S)] .

Proof Sketch. The key step is to show that if the element used by ρ to serve the request S was
picked during the kth iteration of the rounding algorithm, then Eπ∼δ[π(S)] ≥ k/2. Clearly,
ρ(S) ≤ k · r and the theorem follows. Full proof is in Appendix B.2.

3.3 The Lazy Rounding Algorithm

Lazy-Rounding, presented in Algorithm 2, is essentially a lazy derandomization of MWU. At
each step, it calculates the distribution on permutations maintained by MWU. At the beginning
of each phase, it sets its permutation to that given by Algorithm 1. Then, it sticks to the same
permutation for as long as the total variation distance of MWU’s distribution at the beginning
of the phase to the current MWU distribution is at most 1/n. As soon as the total variation
distance exceeds 1/n, Lazy-Rounding starts a new phase.

The main intuition behind the design of our algorithm is the following. In Section 3.2
we showed that Algorithm 1 results in a deterministic algorithm with access cost no larger
than 2rE[AccessCost(MWU)]. However, such an algorithm may incur an unbounded moving
cost; even small changes in the distribution of MWU could lead to very different permutations
after rounding. To deal with that, we update the permutation of Lazy-Rounding only if there
are substantial changes in the distribution of MWU. Intuitively, small changes in MWU’s
distribution should not affect much the access cost (this is formalized in Lemma 3.5). Moreover,
Lazy-Rounding switches to a different permutation only if it is really required, which we use to
bounds Lazy-Rounding’s moving cost.

Algorithm 2 Lazy Rounding

Input: Sequence of requests (S1, . . . , Sm) and the initial permutation π0 ∈ [n!].
Output: A permutation πt at each round t, which serves request St.

1: start-phase← 0
2: P1 ← uniform distribution over permutations
3: for each round t ≥ 1 do
4: if dtv(Pt,Pstart-phase) ≤ 1/n then
5: πt ← πt−1

6: else
7: πt ← Greedy-Rounding(Pt)
8: start-phase← t
9: end if

10: Serve request St using permutation πt.
11: wt+1

π = wtπ · e−π(St)/n3
, for all permutations π ∈ [n!].

12: Pt+1 ← Distribution on permutations of MWU, Pt+1
π = wtπ/(

∑
π∈[n!]w

t
π).

13: end for

8

Bounding the Access Cost. We first show that the access cost of Lazy-Rounding is within
a factor of 4r from the expected access cost of MWU (Lemma 3.6). To this end, we first show
that if the total variation distance between two distributions is small, then sampling from those
distributions yields roughly the same expected access cost for any request S. The proof of the
following is based on the optimal coupling lemma and can be found in Appendix B.3.

Lemma 3.5. Let δ and δ′ be two probability distributions over permutations. If that dTV(δ, δ′) ≤
1/n, for any request set S of size r, we have that

E
π∼δ′

[π(S)] ≤ 2 · E
π∼δ

[π(S)].

We are now ready to upper bound the access cost of our algorithm.

Lemma 3.6. AccessCost(Lazy-Rounding) ≤ 4r · E[AccessCost(MWU)].

Proof. Consider a phase of Lazy-Rounding starting at time t1. We have that at any round
t ≥ t1, πt = Greedy-Rounding(Pt1), as long as dTV(Pt,Pt1) ≤ 1/n. By Theorem 3.4 and
Lemma 3.5, we have that,

AccessCost(Lazy-Rounding(t)) = πt(St) ≤ 2r · E
π∼Pt1

[π(St)] ≤ 4r E
π∼Pt

[π(St)].

Overall we get, AccessCost(Lazy-Rounding) =
∑m

t=1 πt(St) ≤ 4rE[AccessCost(MWU)].

Bounding the Moving Cost. We now show that the moving cost of Lazy-Rounding is upper
bounded by the expected access cost of MWU.

Lemma 3.7. MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)].

Proof. Lazy-Rounding moves at the end of a phase incurring a cost of at most n2. Let t1
and t2 be the starting times of two consecutive phases. By the definition of Lazy-Rounding,
dTV(P t1 , P t2) > 1/n. By Lemma 3.3, we have that the access cost of MWU during t1 and t2 is
at least n2. We get that

MovingCost(ALG)

E[AccessCost(MWU)]
≤ n2# different phases

n2#different phases
= 1.

Theorem 1.2 follows from lemmas 3.6, 3.7 and 3.1. The details can be found in Appendix B.3.

Remark. Note that to a large extent, our approach is generic and can be used to provide static
optimality for a wide range of online problems. The only requirement is that there is a maximum
access cost Cmax and a maximum moving cost D; then, we should use MWU with learning rate
1/(D · Cmax) and move when dTV ≥ 1/Cmax. Here we used D = n2 and Cmax = n. The only
problem-specific part is the rounding of Section 3.2. We explain the details in Appendix B. We
believe it is an interesting direction to use this technique for generalizations of this problem,
like multiple intents re-ranking or interpret known algorithms for other problems like the BST
problem using our approach.

4 A Memoryless Algorithm

In this section we focus on memoryless algorithms. We present an algorithm, called Move-All-
Equally (MAE), which seems to be the “right” memoryless algorithm for online MSSC. MAE
decreases the index of all elements of the request St at the same speed until one of them reaches
the first position of the permutation (see Algorithm 3). Note that MAE belongs to the Move-to-
Front family, i.e., it is a generalization of the classic MTF algorithm for the list update problem.
MAE admits two key properties that substantially differentiate it from the other algorithms in
the Move-to-Front family presented in Section 2.

9

Algorithm 3 Move-All-Equally

Input: A request sequence (S1, . . . , Sm) and the initial permutation π0 ∈ [n!]
Output: A permutation πt at each round t.

1: for each round t ≥ 1 do
2: kt ← min{i |πt−1[i] ∈ St}
3: Decrease the index of all elements of St by kt − 1.
4: end for

(i) Let et denote the element used by OPT to cover the request St. MAE always moves the
element et towards the beginning of the permutation.

(ii) It balances moving and access costs: if the access cost at time t is kt, then the moving
cost of MAE is roughly r · kt (see Algorithm 3). The basic idea is that the moving cost of
MAE can be compensated by the decrease in the position of element et. This is why it is
crucial all the elements to be moved with the same speed.

Lower Bound. First, we show that this algorithm, besides its nice properties, fails to achieve
a tight bound for the online MSSC problem.

Theorem 1.3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

In the lower bound instance, the adversary always requests the last r elements of the al-
gorithm’s permutation. Since MAE moves all elements to the beginning of the permutation,
we end up in a request sequence where n/r disjoint sets are repeatedly requested. Thus the
optimal solution incurs a cost of Θ(n/r) per request, while MAE incurs a cost of Ω(n · r) per
request (the details are in Appendix C) . Note that in such a sequence, MAE loses a factor of r
by moving all elements, instead of one. However, this extra movement seems to be the reason
that MAE outperforms all other memoryless algorithms and avoids poor performance in trivial
instances, like other MTF-like algorithms.

Upper Bounds. Let L denote the set of elements used by the optimal permutation on a
request sequence such that |L| = `. That means, OPT has those ` elements in the beginning of
its permutation, and it never uses the remaining n− ` elements. Consider a potential function
Φ(t) being the number of inversions between elements of L and U \ L in the permutation of
MAE (an inversion occurs when an element of L is behind an element of U \ L). Consider the
request St at time t and let kt be the access cost of MAE.

Let et be the element used by OPT to serve St. Clearly, in the permutation of MAE, et
passes (i.e., changes relative order w.r.t) kt − 1 elements. Among them, let L be the set of
elements of L and R the elements of U \ L. Clearly, |L| + |R| = kt − 1 and |L| ≤ |L| = `. We
get that the move of et changes the potential by −|R|. The moves of all other elements increase
the potential by at most (r − 1) · `. We get that

kt + Φ(t)− Φ(t− 1) ≤ |L|+ |R| − |R|+ (r − 1) · ` ≤ |L|+ (r − 1) · ` ≤ r · `.

Since the cost of MAE at step t is no more than (r + 1) · kt, we get that the amortized cost
of MAE per request is O(r2 · `). This implies that for all sequences such that OPT uses all
elements of L with same frequencies (i.e, the OPT pays on average Ω(`) per request), MAE
incurs a cost within O(r2) factor from the optimal. Recall that all other MTF-like algorithms
are Ω(

√
n) competitive even in instances where OPT uses only one element!

While this simple potential gives evidence that MAE is O(r2)-competitive, it is not enough
to provide satisfactory competitiveness guarantees. We generalize this approach and define the

10

potential function Φ(t) =
∑n

j=1 αj · πt(j), where πt(j) is the position of element j at round t
and αj are some non-negative coefficients. The potential we described before is the special case
where αj = 1 for all elements of L and αj = 0 for elements of U \ L.

By refining further this approach and choosing coefficients αj according to the frequency
that OPT uses element j to serve requests (elements of high frequency are “more important”
so they should have higher values αj), we get an improved upper bound.

Theorem 4.2. The competitive ratio of MAE algorithm is at most 2O(
√

logn·log r).

Note that this guarantee is o(nε) and ω(log n). The proof is based on the ideas sketched
above but the analysis is quite involved and is deferred to Appendix C.

5 Dynamic Online Min-Sum Set Cover

In this section, we turn our attention to the dynamic version of online MSSC. In online dy-
namic MSSC, the optimal solution maintains a trajectory of permutations π∗0, π

∗
1, . . . , π

∗
t , . . .

and use permutation π∗t to serve each request St. The cost of the optimal dynamic solution
is OPTdynamic =

∑
t(π
∗
t (St) + dKT(π∗t−1, π

∗
t)), where {π∗t }t denotes the optimal permutation

trajectory for the request sequence that minimizes the total access and moving cost.
We remark that the ratio between the optimal static solution and the optimal dynamic

solution can be as high as Ω(n). For example, in the sequence of requests {1}b{2}b . . . {n}b, the
optimal static solution pays Θ(n2b), whereas the optimal dynamic solution pays Θ(n2 +n ·b) by
moving the element that covers the next n · b requests to the first position and then incurring
access cost 1. The above example also reveals that although Algorithm 2 is Θ(r)-competitive
against the optimal static solution, its worst-case ratio against a dynamic solution can be Ω(n).

MAE Algorithm. As a first study of the dynamic problem, we investigate the competitive
ratio of Move-All-Equally (MAE) algorithm from Section 4. We begin with an upper bound.

Theorem 1.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/2√n).

The approach for proving Theorem 1.4 is generalizing that exhibited in Section 4 for the static
case. We use a generalized potential function Φ(t) =

∑n
j=1 α

t
j · πt(j); i.e, the multipliers αj

may change over time so as to capture the moves of OPTdynamic. To select coefficients αtj
we apply a two-level approach. We observe that there is always a 2-approximate optimal
solution that moves an element of St to the front (similar to classic MTF in list update). We
call this MTFOPT . We compare the permutation of the online algorithm with the permutation
maintained by this algorithm; at each time, elements the beginning of the offline permutation are
considered to be “important” and have higher coefficients αtj . The formal proof is in Appendix D.

Next, we show an almost matching lower bound.

Theorem 1.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

Sketch of the Construction. The lower bound is based on a complicated adversarial request
sequence; we sketch the main ideas. Let k be an integer. During a phase we ensure that:

(i) There are 2k “important” elements used by OPT; we call them e1, . . . , e2k. In the begin-
ning of the phase, those elements are ordered in the start of the optimal permutation π∗,
i.e., π∗[ej] = j. The phase contains k consecutive requests to each of them, in order; thus
the total number of requests is ≈ 2k2. OPT brings each element ej at the front and uses

11

it for k consecutive requests; thus the access cost of OPT is 2k2 (1 per request) and the
total movement cost of OPT of order Θ(k2). Over a phase of 2k2 requests, OPT incurs
an overall cost Θ(k2), i.e., an average of O(1) per request.

(ii) The first k+r−2 positions of the online permutation will be always occupied by the same
set of “not important” elements; at each step the r − 2 last of them will be part of the
request set and MAE will move them to the front. Thus the access cost will always be
k + 1 and the total cost more than (r + 1) · k.

The two properties above are enough to provide a lower bound Ω(r · k); the optimal cost is
O(1) per request and the online cost Ω(r ·k). The goal of an adversary is to construct a request
sequence with those two properties for the largest value of k possible.

The surprising part is that although MAE moves all requested elements towards the be-
ginning of the permutation, it never manages to bring any of the “important” elements in a
position smaller than r+k−2. While the full instance is complex and described in Appendix D,
at a high-level, we make sure that whenever a subsequence of k consecutive requests including
element ej begins, ej is at the end of the online permutation, i.e., πt[ej] = n. Thus, even after
k consecutive requests where MAE moves it forward by distance k, it moves by k2 positions;
by making sure that n− k2 > r + k − 2 (which is true for some k = Ω(

√
n)), we can make sure

that ej does not reach the first r + k − 2 positions of the online permutation.

6 Concluding Remarks

Our work leaves several intriguing open questions. For the (static version of) Online MSSC, it
would be interesting to determine the precise competitive ratio of the MAE algorithm; particu-
larly whether it depends only on r or some dependency on n is really necessary. More generally,
it would be interesting to determine the best possible performance of memoryless algorithms
and investigate trade-offs between competitiveness and computational efficiency.

For the online dynamic MSSC problem, the obvious question is whether a f(r)-competitive
algorithm is possible. Here, we showed that techniques developed for the list update problem
seem to be too problem-specific and are not helpful in this direction. This calls for the use of
more powerful and systematic approaches. For example, the online primal-dual method [18] has
been applied successfully for solving various fundamental problems [6,7,17,19]. Unfortunately,
we are not aware of a primal-dual algorithm even for the special case of list update; the only
attempt we are aware of is in [45], but this analysis basically recovers known (problem-specific)
algorithms using dual-fitting. Our work gives further motivation for designing a primal-dual
algorithm for list-update: this could be a starting point towards solving the online dynamic
MSSC.

In a broader context, the online MSSC is the first among a family of poorly understood
online problems such as the multiple intents re-ranking problem described in Section 1.2. In
this problem, when a set St is requested, we need to cover it using s ≤ r elements; MSSC is
the special case s = 1. It is natural to expect that the lower bound of Theorem 1.1 can be
generalized to Ω(r/s), i.e., as s grows, we should be able to achieve a better competitive ratio.
It will be interesting to investigate this and the applicability of our technique to obtain tight
bounds for this problem.

References

[1] Susanne Albers. Improved randomized on-line algorithms for the list update problem.
SIAM J. Comput., 27(3):682–693, 1998.

12

[2] C. J. Argue, Anupam Gupta, Guru Guruganesh, and Ziye Tang. Chasing convex bodies
with linear competitive ratio. In SODA, pages 1519–1524, 2020.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[4] Yossi Azar and Iftah Gamzu. Ranking with submodular valuations. In SODA, pages
1070–1079, 2011.

[5] Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multiple intents re-ranking. In STOC, pages
669–678, 2009.

[6] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k -server problem. J. ACM, 62(5):40:1–40:49, 2015.

[7] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for
weighted paging. J. ACM, 59(4):19:1–19:24, 2012.

[8] Nikhil Bansal, Marek Eliáš, and Grigorios Koumoutsos. Weighted k-server bounds via
combinatorial dichotomies. In FOCS, pages 493–504, 2017.

[9] Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. Competitive
algorithms for generalized k -server in uniform metrics. In SODA, pages 992–1001, 2018.

[10] Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor ap-
proximation algorithm for generalized min-sum set cover. In SODA, pages 1539–1545,
2010.

[11] Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami Tamir.
On chromatic sums and distributed resource allocation. Inf. Comput., 140(2):183–202,
1998.

[12] Avrim Blum and Carl Burch. On-line learning and the metrical task system problem.
Machine Learning, 39(1):35–58, 2000.

[13] Avrim Blum, Shuchi Chawla, and Adam Kalai. Static optimality and dynamic search-
optimality in lists and trees. Algorithmica, 36(3):249–260, 2003.

[14] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

[15] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745–763, 1992.

[16] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems
on trees via mirror descent and unfair gluing. In SODA, pages 89–97. SIAM, 2019.

[17] Niv Buchbinder and Joseph Naor. Improved bounds for online routing and packing via a
primal-dual approach. In FOCS, pages 293–304, 2006.

[18] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science, 3(2-3):93–263,
2009.

[19] Niv Buchbinder and Joseph Naor. Fair online load balancing. J. Scheduling, 16(1):117–127,
2013.

13

[20] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results
on server problems. SIAM J. Discrete Math., 4(2):172–181, 1991.

[21] Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on
trees. SIAM J. Comput., 20(1):144–148, 1991.

[22] Christian Coester and James R. Lee. Pure entropic regularization for metrical task systems.
In COLT, volume 99 of Proceedings of Machine Learning Research, pages 835–848. PMLR,
2019.

[23] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods
for the Web. In Proceedings of the Tenth International World Wide Web Conference,
WWW 10, pages 613–622. ACM, 2001.

[24] Ran El-Yaniv. There are infinitely many competitive-optimal online list accessing algo-
rithms. Hebrew University of Jerusalem, 1996.

[25] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algo-
rithmica, 40(4):219–234, 2004.

[26] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica,
50(1):1–57, 2008.

[27] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[28] Anupam Gupta, Guru Guruganesh, Binghui Peng, and David Wajc. Stochastic online
metric matching. In ICALP, pages 67:1–67:14, 2019.

[29] Refael Hassin and Asaf Levin. An approximation algorithm for the minimum latency set
cover problem. In ESA, pages 726–733, 2005.

[30] John Iacono and Wolfgang Mulzer. A static optimality transformation with applications
to planar point location. Int. J. Comput. Geometry Appl., 22(4):327–340, 2012.

[31] Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency submod-
ular cover. ACM Trans. Algorithms, 13(1):13:1–13:28, 2016.

[32] Sungjin Im, Maxim Sviridenko, and Ruben van der Zwaan. Preemptive and non-preemptive
generalized min sum set cover. Math. Program., 145(1-2):377–401, 2014.

[33] Elias Koutsoupias and Akash Nanavati. The online matching problem on a line. In WAOA,
pages 179–191, 2003.

[34] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. Journal of
the ACM, 42(5):971–983, 1995.

[35] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf. Com-
put., 108(2):212–261, 1994.

[36] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms
for server problems. J. Algorithms, 11(2):208–230, 1990.

[37] Adam Meyerson. Online facility location. In FOCS, pages 426–431. IEEE Computer
Society, 2001.

14

[38] Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner tree
and related problems. In FOCS, pages 210–219, 2011.

[39] Krati Nayyar and Sharath Raghvendra. An input sensitive online algorithm for the metric
bipartite matching problem. In FOCS, pages 505–515, 2017.

[40] Mark Sellke. Chasing convex bodies optimally. In SODA, pages 1509–1518, 2020.

[41] René Sitters. The generalized work function algorithm is competitive for the generalized
2-server problem. SIAM J. Comput., 43(1):96–125, 2014.

[42] Martin Skutella and David P. Williamson. A note on the generalized min-sum set cover
problem. Oper. Res. Lett., 39(6):433–436, 2011.

[43] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985.

[44] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J.
ACM, 32(3):652–686, 1985.

[45] Erez Timnat. The list update problem, 2016. Master Thesis, Technion- Israel Institute of
Technology.

15

A Deferred Proofs of Section 2

In this section, we include the proofs deferred from section 2. First, we prove the general lower
bound for the competitive ratio of any deterministic online algorithm for the Online Min Sum
Set Cover problem.
Theorem 1.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1) · (1− r

n+1).

Proof. Let ALG be any online algorithm. The adversary creates a request sequence in which
every request is composed by the r last elements of the current permutation of ALG. At each
round t, ALG incurs an accessing cost of at least n − (r − 1). Thus for the whole request
sequence of m requests, Cost(ALG) ≥ m · (n− r + 1).

The non-trivial part of the proof is to estimate the cost of the optimal static permutation.
We will count total cost of all n! static permutations and use the average cost as an upper
bound on the optimal cost. For any request set St, we intend to find the total cost of the n!
permutations for St. To do this, we will count the number permutations that have access cost
of i, for every 1 ≤ i ≤ n − (r − 1). For such counting, there are two things to consider. First,
in how many different ways we can choose the positions where the r elements of St are located
and second how many different orderings on elements of St and of U \ St exist. We address
those two separately.

(i) For a permutation π that incurs an access cost of i, it follows that, from the elements in
St, the first one in π is located in position i and no other element from the set is located in
positions j < i. The other r − 1 elements of St are located among the last n− i positions
of π. There are

(
n−i
r−1

)
different ways to choose the locations of those elements.

(ii) Once the positions of elements of St have been fixed, there are r! different ways to assign the
elements in those positions, equal to the number of permutations on r elements. Similarly,
there are (n−r)! different ways to assign elements of U \St to the n−r remaining positions.

Gathering the above, we conclude that the number of permutations that incur access cost
exactly i for a fixed request St is (

n− i
r − 1

)
r!(n− r)!.

The latter implies two basic facts:

1.
∑n−r+1

i=1

(
n−i
r−1

)
r!(n− r)! = n! (since each permutation has a specific cost for request St).

2. The total sum of access costs for fixed request of size r is:

Total-Access-Cost =
n−r+1∑
i=1

i ·
(
n− i
r − 1

)
r!(n− r)!

=
n−r+1∑
i=1

n−r+1∑
j=i

(
n− j
r − 1

)
r!(n− r)! By reordering the terms

=
n−r+1∑
i=1

n−r+1∑
j=i

(
n− j
r − 1

)
r!(n− r)!︸ ︷︷ ︸

permutations with access cost≥i

=
n−r+1∑
i=1

(
n− i+ 1

r

)
r!(n− r)!

16

= r!(n− r)!
(
n+ 1

r + 1

)
where the last equality follows by the fact that

∑n−r+1
i=1

(
n−i
r−1

)
r!(n − r)! = n! (see number 1

above) with n← n+ 1 and r ← r + 1. Hence for a request sequence of length m, we get that

Cost(OPT) ≤ m · r!(n− r)!
n!

(
n+ 1

r + 1

)
= m · n+ 1

r + 1
.

We conclude that for any deterministic algorithm ALG, we have:

Cost(ALG)

Cost(OPT)
≥ m · (n− r + 1)

m · n+1
r+1

= (r + 1) ·
(

1− r

n+ 1

)
= r + 1− r(r + 1)

n+ 1
.

Lower bounds for various algorithms. Next, we prove the lower bounds for the competitive
ratio of the several online algorithms generalizing the MTF algorithm. For all lower bounds
we use request sets of size r = 2. Recall that πt(j) the jth element of the permutation πt for
1 ≤ j ≤ n
MTFfirst: Move to the first position (of the algorithm’s permutation) the element of St ap-
pearing first in πt .
Lower bound: Let the request sequence S1, S2, . . . Sm, in which St contains the last two ele-
ments of MTFfirst’ s permutation at round t − 1. Formally, St = {πt(n − 1), πt(n)}. MTFfirst

moves the first element of the request in the first position and in every round the last element
in MTFfirst’ s permutation remains the same (πt(n) = π0(n)). As a result, MTFfirst pays Ω(n)
in each request, whereas OPT has the element π0[n] in the first position and just pays 1 per
request.

MTFlast: Move to the first position the element of St appearing last in πt .
Lower bound: Let the request sequence S1, S2, . . . Sm, in which each set St always contains
the last element of πt − 1 and the fixed element 1. Clearly MTFlast pays Ω(m · n), while
cost(OPT) = m by having element 1 in the first place.

MTFall: Move to the first r positions all elements of St (in the same order as in πt) .
Lower bound: The same as previous.

MTFrandom: Move to the first position an element of St selected uniformly at random.
Lower bound: Let the request sequence S1, S2, . . . Sm, in which each set St always contains
an element selected uniformly at random from πt and the fixed element 1. Therefore elements
in the last n/2 positions of πt have probability 1/2 to be chosen. At each round t, MTFrandom

moves with probability 1/2 to the first position of the list, the element of St that was randomly
selected. Thus at each round t, MTFrandom pays with probability 1/4, moving cost at least n/2,
meaning that the overall expected cost is at least m · n/8. As a result, the ratio is Ω(n) since
OPT pays m by keeping element 1 in the first position.

MTFrelative: Let i be the position of the first element of St in πt. Move to the first positions
of the algorithm’s permutation (keeping their relative order) all elements of St appearing up to
the position c · i in πt, for some constant c.
Lower bound: Let the request sequence S1, . . . Sn in which St contains the bn−1

c cth and the
nth element of the list at round t− 1. MTFrelative never moves the last element and thus πn(0)
belongs in all sets St. As in first case, this provides an Ω(n) ratio.

MTFcount: Move to the first position the most frequent element of St (i.e., the element of St
appearing in most requested sets so far).

17

Lower bound: The request sequence S1, . . . , Sm is specifically constructed so that MTFcount

never moves the last b elements of the initial permutation π0.

π0 = [x1, . . . , xn−b︸ ︷︷ ︸
n−b elements

, xn−b+1, . . . , xn︸ ︷︷ ︸
b elements

]

The constructed request sequence S1, . . . , Sm will be composed by m/n sequences of length n.
Each piece of length n will have the following form:

1. n− b requests {x1, x2}, {x1, x3}, . . . {x1, xn−b} (all requests contain x1).

2. {element in position n− b, xn−b+i} for i = 1 to b (additional b requests).

After the requests of type 1, the list is the same as the initial one, since x1 has frequency n− b
and x2, . . . xn−b have frequency 1. Now consider the requests of type 2. MTFcount moves always
to the front the element which is in position n− b, since has already been involved in a type 1
request and has greater frequency. Therefore, MTFcount pays b · (n − b). Repeating the same
request sequence m/n times, we can construct a sequence of length m. In this request sequence,
OPT keeps the element x1 in the first position and the elements {xn−b+1, . . . , xn} in the next
b positions. Thus, OPT pays (n − b) · m/n for the requests of type 1 and b2 · m/n for the
requests of type 2. MTFcount pays (n− b) ·m/n for the requests of type 1 (same as OPT), but
(n− b) · b ·m/n for the requests of type 2. Setting b =

√
n, we get a Ω(

√
n) lower bound for the

competitive ratio of MTFcount, which concludes this section.

B Deferred Proofs of Section 3

In this section we include the proofs deferred from Section 3.

B.1 Proofs Related to MWU Algorithm

Here we include omitted proofs related to MWU algorithm.

Access Cost of MWU. We first show that the MWU is 5/4-competitive for access costs.
Lemma 3.1. For any request sequence σ = (S1, . . . , Sm) we have that

E[AccessCost(MWU)] ≤ 5

4
· Cost(OPT) + 2n4 lnn.

Proof. By the standard results in learning theory [27, 35], we know that for any sequence σ =
(S1, . . . , Sm), the MWU algorithm satisfies

m∑
t=1

∑
π∈[n!]

Ptπ ·AccessCost(π, St) ≤
ln(1/β)

1− β
· min
π∈[n!]

m∑
t=1

π(St) +
ln(n!)

1− β
.

where β = e−1/n3
. Thus, 3/4 < β < 1, for any n ≥ 2. Using standard inequalities we get that

ln(1/β)
1−β ≤ 5/4 and 1− β ≥ 1/2n3 for any n ≥ 2. We finally get that,

E[AccessCost(MWU)] ≤ 5

4
· Cost(OPT) + 2n4 lnn.

18

Total Variation Distance. We now proceed on the proofs of lemmas relating the total
variation distance of the distribution maintained by the MWU algorithm to its access cost.

Lemma 3.2. Let Pt be the probability distribution of MWU algorithm at time t. Then, the
probability distribution Pt+1 of the algorithm satisfies

dTV(Pt,Pt+1) ≤ 1

n3
· E[AccessCost(MWU(t))].

Proof. To simplify notation, let W t =
∑

π∈[n!]w
t
π. We remind that by the definition of MWU,

wt+1
π = wtπ · e−π(St)/n3

. Moreover, by the definition of total variation distance,

dTV(Pt,Pt+1) =
∑

π:Ptπ>Pt+1
π

Ptπ − Pt+1
π =

∑
π:Ptπ>Pt+1

π

(
wtπ
W t
− wt+1

π

W t+1

)

≤
∑

π:Ptπ>Pt+1
π

(
wtπ
W t
− wt+1

π

W t

)

≤
∑
π∈[n!]

(
wtπ
W t
− wt+1

π

W t

)
=
∑
π∈[n!]

wtπ
W t
·
(

1− e−π(St)/n3

)

=
∑
π∈[n!]

Ptπ ·
(

1− e−(π(St)/n3)

)
≤
∑
π∈[n!]

Ptπ ·
π(St)

n3

=
1

n3
· E[AccessCost(MWU(t))] .

In the first inequality we used that W t+1 ≤ W t. In the second inequality we used that for all

π we have that wt+1
π ≤ wtπ which implies that wtπ−w

t+1
π

W t ≥ 0. In the last inequality we used that
1− ex ≤ −x, for any x.

Lemma 3.3. Let t1 and t2 two different time steps such that dTV(Pt1 ,Pt2) ≥ 1/n. Then,
during the time interval [t1, t2) the cost of the MWU algorithm is at least n2.

t2−1∑
t=t1

E[AccessCost(MWU(t))] ≥ n2.

Proof. By Lemma 3.2 and summing over all t such that t1 ≤ t < t2, we have that

t2−1∑
t=t1

dTV(Pt,Pt+1) ≤ 1

n3
·
t2−1∑
t=t1

E[AccessCost(MWU(t))]. (1)

By triangle inequality we have that dTV(Pt1 ,Pt2) ≤
∑t2−1

t=t1
dTV(Pt,Pt+1). Combined with (1),

this implies that

dTV(Pt1 ,Pt2) ≤ 1

n3

t2−1∑
t=t1

E[AccessCost(MWU(t))].

19

By rearranging and using that dTV(Pt1 ,Pt2) ≥ 1/n, we get that

t2−1∑
t=t1

E[AccessCost(MWU(t))] ≥ n3 · 1

n
= n2

B.2 Rounding

Theorem 3.4.Let δ be a distribution over permutations and let ρ be the permutation output by
Algorithm 1 on δ. Then, for any set S, with |S| = r,

ρ(S) ≤ 2r · E
π∼δ

[π(S)] .

Proof. Let e be the element used by ρ to serve the request on set S. Pick k such that (k − 1) ·
r + 1 ≤ AccessCost(ρ, S) ≤ k · r. That means, e was placed at the permutation ρ at the kth
iteration of the rounding algorithm.

Let S1, . . . , Sn/r be the sets chosen during the rounding algorithm. Recall that ρ uses an
element from Sk to serve the request. To this end, we use the technical Lemma B.1 in order to
get a lower bound on the expected cost of δ. We distinguish between two cases:

1. Case S = Sk. In that case, by Lemma B.1 we get that Eπ∼δ[π(S)] ≥ k+1
2 .

2. Case S 6= Sk. That means, e is one element of S in Sk and no elements of S are in sets
S1, . . . , Sk−1. By construction of or rounding algorithm, we have that

E
π∼δ

[π(S)] ≥ E
π∼δ

[π(Sk)] ≥
k + 1

2
.

We get that in both cases Eπ∼δ[π(S)] ≥ k+1
2 . We conclude that

AccessCost(ρ, S)

Eπ∼δ[AccessCost(δ, S)]
≤ k · r

k+1
2

≤ 2 · r

We now proceed to the lemma omitted in the proof of Theorem 3.4.

Lemma B.1. Let δ be a probability distribution over permutations and 1 ≤ k ≤ n
r . Let

S1, . . . , Sk be disjoint sets such that Sj ⊆ U and |Sj | = r for all 1 ≤ j ≤ k. Let Ej = Eπ∼δ[π(Sj)]
for any 1 ≤ j ≤ k. If E1 ≤ . . . ≤ Ek, then, we have that Ej ≥ j+1

2 , for 1 ≤ j ≤ k.

Proof. We have that

Ej ≥
1

j

j∑
`=1

E` =
1

j

j∑
`=1

∑
π

Pr
δ

[π] · π(S`) Using E1 ≤ . . . ≤ Ej

=
1

j

∑
π∈[n!]

Pr
δ

[π] ·
j∑
`=1

π(S`) Linearity of summation

≥ 1

j

∑
π∈[n!]

Pr
δ

[π] · j(j + 1)

2

=
j + 1

2

∑
π

Pr
δ

[π] =
j + 1

2

where
∑j

`=1 π(S`) ≥ j(j+1)
2 follows by the fact that π(S`) take j different positive integer values

(the sets S` are disjoint).

20

B.3 Our Algorithm

In this section we include all proofs related to the analysis of our algorithm.
Lemma 3.5 Let δ and δ′ be two probability distributions over permutations. If that dTV(δ, δ′) ≤
1/n, for any request set S of size r, we have that

E
π∼δ′

[π(S)] ≤ 2 · E
π∼δ

[π(S)].

Proof. By coupling lemma there exists a coupling (X,Y) such that

Pr[X 6= Y] = dTV(δ, δ′). (2)

Clearly, E[AccessCost(X,S)] = Eπ∼δ[π(S)] and E[AccessCost(Y, S)] = Eπ∼δ′ [π(S)]. Note that
since minimum cost for serving a request is 1 and maximum n, it will always hold that

1 ≤ E[AccessCost(X,S)],E[AccessCost(Y, S)] ≤ n.

We will show that E[AccessCost(Y, S)−AccessCost(X,S)] ≤ 1. This implies the lemma as
follows:

E
π∼δ′

[π(S)] = E[AccessCost(Y, S)]

≤ E[AccessCost(X,S)] + 1 ≤ 2E[AccessCost(X,S)]

= 2 E
π∼δ

[π(S)].

Thus it remains to show that E[AccessCost(Y, S) − AccessCost(X,S)] ≤ 1. For notational
convenience, let the random variable Z = AccessCost(X,S) − AccessCost(Y, S). It suffices to
show that E[Z] ≤ 1. We have that

E[Z] ≤ Pr[AccessCost(X,S) = AccessCost(Y, S)]·0+Pr[AccessCost(X,S) 6= AccessCost(Y, S)]·n,
(3)

since whenever X 6= Y , the difference in the cost is upper bounded by n.
Observe that Pr[X(S) 6= Y (S)] ≤ Pr[X 6= Y]; this is because ifX = Y , then AccessCost(X,S) =

AccessCost(Y, S), but it may happen that X 6= Y but AccessCost(X,S) = AccessCost(Y, S).
From (3) we get that

E[Z] ≤ Pr[X 6= Y] · n. (4)

Combining (2) with (4) we get that

E[Z] ≤ dTV(δ, δ′) · n ≤ 1

n
· n = 1.

Proof of Theorem 1.2. We now give the formal proof of the competitive ratio of Lazy-Rounding
algorithm.
Theorem 1.2. There exists a (5r+ 2)-competitive deterministic online algorithm for the static
version of the Online Min-Sum Set Cover problem.

Proof. We show that our algorithm ALG is (5r + 2)-competitive.
By lemmata 3.6 and 3.7 we get that

Cost(Lazy-Rounding) ≤ (4r + 1) ·AccessCost(MWU). (5)

21

Now, we connect the access cost of MWU to the optimal cost. By Lemma 3.1 we have that

AccessCost(MWU) ≤ 5

4
· Cost(OPT) + 2n4 lnn. (6)

By (5) and (6) we get that

Cost(Lazy-Rounding) ≤ (5r + 2) · Cost(OPT) + 2 · (4r + 1) · n4 lnn

On our Approach. We now show how our approach for static optimality can be used to a
wide class of online problems.

Consider any MTS problem with N states such that in each request the service cost of each
state is at most Cmax and the diameter of the state space is D. Assume that there exists a
rounding scheme providing a derandomization of MWU such that the service cost is within α
factor of the expected service cost of MWU. We explain how our technique from Section 3 can
be used to obtain a O(α)-competitive algorithm against the best state.

Algorithm. The algorithm is essentially the same as Algorithm 2, using the MWU algorithm
with learning rate 1/(D · Cmax) and moving when the total variation distance between the
distributions exceeds 1/Cmax.

This way, Lemma 3.2 would give a bound of

dTV(Pt,Pt+1) ≤ 1

D
·AccessCost(MWU(t))

and as a consequence in Lemma 3.3 we will get that the (expected) cost of MWU during a
phase is at least D. Since the algorithm moves only at the end of the phase, incurring a cost of
at most D, Lemma 3.7 will still hold. Last, it is easy to see that Lemma 3.5 will then hold for
dTV(δ, δ′) ≤ 1/Cmax. This way, Lemma 3.6 would give that

AccessCost(ALG) ≤ 2αE[Cost(MWU)].

Combining the above, we get that the algorithm is O(α)-competitive.

C Deferred Proofs of Section 4

In this section, we provide the proofs omitted from section 4. More specifically, we prove a
lower bound and an an upper bound on the competitive ratio of the MAE algorithm against
the static optimal solution.

C.1 Lower Bound

We start with the lower bound of Ω(r2) on the competitive ratio of MAE against OPT.

Theorem 1.3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

Proof. MAE is given an initial permutation π0 with size n, where n = r · k, for integers r, k
both greater than 1. At each round t, the adversary gives requests St, which consist of the
last r elements in the permutation πt−1 of MAE. Since MAE moves all the elements of St to
the beginning of πt, the request St+1 contains the r elements preceding the elements of St in
πt. Thus, the request sequence can be divided in m/k requests containing the same k pairwise
disjoint requests, denoted as S∗ = {S∗1 , . . . S∗k}. The optimal static solution can serve the request
sequence by using only k elements, where each of these elements belongs to exactly one of the

22

S∗j , 1 ≤ j ≤ k. OPT has these elements in the first k positions and pays 1 + 2 + . . .+ k ≤ k2 for
every k consecutive requests (S∗1 , . . . S

∗
k). MAE clearly pays n−r+1 access cost and r ·(n−r+1)

moving cost on every request, therefore MAE = m · (r+ 1) · (n− r+ 1). Then, the competitive
ratio of MAE is at least

Cost(MAE)

Cost(OPT)
≥ m · (r + 1) · (n− r + 1)

(m/k) · k2
=

(r + 1) · (r · k − r + 1)

k
= Ω(r2)

C.2 Upper Bound

We now proceed to the proof of the upper bound on the competitive ratio of MAE algorithm.

Theorem 4.2. The competitive ratio of MAE algorithm is at most 2O(
√

logn·log r).

Let the frequency of an element e be the fraction of requests served by e in the optimal
permutation. At a high-level, we divide the optimal permutation into k+1 blocks where in each
of the first k blocks the frequencies of all elements are within a factor of β and the last block
contains all elements with frequencies at most 1/n2. By construction, in worst-case k ≈ logn

log β .
The main technical contribution of this section is proving the following lemma.

Lemma C.3. For any parameter β > 1,

Cost(MAE) ≤ 4β(2r)k+1 · Cost(OPT) + (2r)kn2

where k = d2 log n/ log βe.

Note that Theorem 4.2 follows from Lemma C.3 by balancing the values of β and (2r)k+1.
It is easy to verify that by setting β = 2

√
8 logn·log 2r, we obtain a competitive ratio at most

β2 ≤ 28
√

logn log r

Notation and Definitions. Let fj ∈ [0, 1] denote the covering frequency, which is the total
fraction of requests served by the optimal permutation with element j. For convenience, we
reorder the elements such that f1 ≥ f2 ≥ . . . ≥ fn. As a result, Cost(OPT) = m ·

∑n
j=1 j · fj .

We partition the elements of U into k + 1 blocks, as follows. The last block, Ek+1 contains
all elements j with fj ≤ 1/n2; intuitively those are the least important elements. The block
Ei for 1 ≤ i ≤ k contains all elements with frequencies in the interval [f1/β

i−1, f1/β
i). Note

that in worst case, k = d2 log n/ log βe; we need that f1/β
k ≤ 1/n2, which is equivalent to

k ≥ f1 · 2 logn
log β .

Lower Bound on optimal cost. Using this structure, we can express a neat lower bound
on the cost of the optimal static permutation, which is formally stated in the following lemma.
Lemma C.4 provides a lower bound on Cost(OPT) using the first k blocks. For the rest of this
section, let Fi = ∪ij=1Ej the set of all elements in the first i blocks, for 1 ≤ i ≤ k. Let also

f imax, f
i
min denote the maximum and minimum covering frequencies in the set Ei.

Lemma C.4. For any request sequence the optimal cost is at least

Cost(OPT) ≥ m

2

k∑
i=1

|Ei| · |Fi| · f imin.

Proof. Using the definitions above, OPT uses element j exactly m · fj times for a total cost
j ·m · fj . To account for all elements of the same bucket Ei together, we underestimate this

23

cost and for an element j ∈ Ei we charge OPT only for m · f imin ≤ m · fj requests. We get that:

Cost(OPT) = m

n∑
j=1

fj · j ≥ m
k∑
i=1

∑
j∈Ei

fj · j ≥ m
k∑
i=1

f imin

∑
j∈Ei

j

= m

k∑
i=1

f imin

|Ei|∑
j=1

(j + |Fi−1|) = m

k∑
i=1

f imin

(
|Ei||Fi−1|+

|Ei|(|Ei|+ 1)

2

)

≥ m

2

k∑
i=1

f imin · |Ei| · (|Fi−1|+ |Ei|) =
m

2

k∑
i=1

f imin · |Ei| · |Fi|

Upper Bound on cost of MAE. Using the blocks, we also obtain an upper bound on the
cost of Move-All-Equally. This is formally stated in Lemma C.5.

Lemma C.5. For any request sequence the cost of MAE algorithm can be upper bounded as
follows:

Cost(MAE) ≤ (2r)k+1 ·m
k∑
i=1

|Fi||Ei| · f imax + 2(2r)k+1 ·m+ (2r)k · n2.

Before proceeding to the proof of Lemma C.5, which is quite technically involved, we show how
Lemma C.3 follows from Lemmata C.5 and C.4.

Proof of Lemma C.3. From Lemma C.5 we have that

Cost(MAE) ≤ (2r)k+1 ·m
k∑
i=1

|Fi||Ei| · f imax︸ ︷︷ ︸
≤β·Cost(OPT)

+ 2(2r)k+1 ·m︸ ︷︷ ︸
≤2(2r)k+1·Cost(OPT)

+(2r)k · n2

≤ 4β(2r)k+1 · Cost(OPT) + (2r)k · n2,

where in the inequality we used the lower bound on Cost(OPT) from Lemma C.4 and that
f imax = f imin · β for all i.

Proof of Lemma C.5

It remains to prove Lemma C.5 which gives the upper bound on the cost of MAE algorithm.
The proof lies on the right selections of the coefficients αj in the potential function Φ(t):

Φ(t) =

n∑
j=1

αj · πt(j),

where πt(j) is the position of element j at round t and αj are some non-negative coefficients.
More precisely, if j ∈ Ei then αj = (2r)k−i for i = 1, . . . , k and αj = 0 if j ∈ Ek+1.

At time t, let kt denote the access cost of MAE and let et be the element used by OPT to
serve request St. Using the coefficients mentioned above, we can break the analysis into two
different types of requests: (i) requests served by OPT using an element et ∈ Ei for 1 ≤ i ≤ k
and (ii) requests served by OPT using et ∈ Ek+1. At a high-level the first case is the one where
the choice of coefficients is crucial; for the second, we show that the frequencies are so “small”,
such that even if MAE incurs an access cost of n, this does not affect the bound of Theorem 4.2.

We start with the first type of requests. We show the following lemma.

24

Lemma C.6. At time t, if et ∈ Ei, for 1 ≤ i ≤ k, then we have that

AccessCost(MAE(t)) + Φ(t)− Φ(t− 1) ≤ (2r)k · |Fi|

For the second type of requests we have the following lemma.

Lemma C.7. The total amortized cost of MAE algorithm for all requests such that et ∈ Ek+1

is at most
(
(2r)k + 1

)
·m.

The proofs of those Lemmas are at the end of this section. We now continue the proof of
Lemma C.5.

Proof of Lemma C.5. We upper bound the total access cost of MAE, that is
∑m

t=1 kt. Clearly,
by construction of MAE, the total cost is at most (r + 1) ·

∑m
t=1 kt. We have that

m∑
t=1

kt + Φ(t)− Φ(t− 1) =
k∑
i=1

 ∑
t:et∈Ei

kt + Φ(t)− Φ(t− 1) +
∑

t:et∈Ek+1

kt + Φ(t)− Φ(t− 1)

≤

k∑
i=1

∑
t:et∈Ei

(2r)k · |Fi|+
(

(2r)k + 1
)
·m

=
k∑
i=1

(2r)k · |Fi| ·m ·
∑
j∈Ei

f tj +
(

(2r)k + 1
)
·m

≤
k∑
i=1

(2r)k · |Fi| ·m ·
∑
j∈Ei

f imax +
(

(2r)k + 1
)
·m

=
k∑
i=1

(2r)k · |Fi||Ei| · f imax ·m+
(

(2r)k + 1
)
·m,

where the first inequality comes from Lemmata C.6, C.7. Using Φ(0) ≤ (2r)k−1n2 we get

Cost(MAE) ≤ 2r ·
m∑
t=1

kt ≤ 2r

(
k∑
i=1

(2r)k · |Fi||Ei| · f imax ·m+
(

(2r)k + 1
)
·m+ (2r)k−1n2

)

≤ (2r)k+1
k∑
i=1

·|Fi||Ei| · f imax ·m+ 2(2r)k+1 ·m+ (2r)k · n2

We conclude the Section with the proofs of lemmata C.6, C.7, which were omitted earlier.

Proof of Lemma C.6. At time t, the access cost of MAE is kt. We have that

kt + Φ(t)− Φ(t− 1) = kt − αet · kt +
∑
j 6=et

αj(πt(j)− πt−1(j))

≤ kt · (1− αet) + (2r)k−1 · |Fi| · r +
∑

j∈U\Fi

αj(πt(j)− πt−1(j)),

where the inequality follows from the fact that each element in Fi can increase its position by
at most r and that the maximum coefficient αj is at most (2r)k−1. We complete the proof by
showing that

kt · (1− αet) +
∑

j∈U\Fi

αj(πt(j)− πt−1(j)) ≤ 0

25

If et ∈ Ek then αet = 1 and αj = 0 for all j ∈ U \ Fk, thus the left hand side equals 0 and the
inequality holds. It remains to analyze the case where et ∈ Ei and i < k.

kt · (1− αet) +
∑

j∈U\Fi

αj(πt(j)− πt−1(j)) ≤ kt · (1− αet) +
∑

j∈U\Fi

αet
2r
· |πt(j)− πt−1(j)|

≤ kt · (1− αet) +
αet
2r
· r · kt

= kt · (1− αet +
αet
2

) ≤ 0.

The last inequality is due to the fact that αet ≥ r, thus 1− αet/2 is negative if r ≥ 2.

Proof of Lemma C.7. We sum the total amortized cost over all time steps t such that et ∈ Ek+1.
We have that∑
t:et∈Ek+1

kt + Φ(t)− Φ(t− 1) ≤
∑

t:et∈Ek+1

n+ (2r)k−1 · n · r ≤
(

(2r)k + 1
)
· n

∑
t:et∈Ek+1

1

≤
(

(2r)k + 1
)
· n ·m ·

∑
j∈Ek+1

fj ≤
(

(2r)k + 1
)
· n ·m · |Ek+1|

n2

≤
(

(2r)k + 1
)
·m

D Deferred Proofs of Section 5

In this section we present the full proofs of Theorems 1.4 and 1.5.

Upper bound. We start with the upper bound on the competitive ratio of the MAE algorithm.
Recall that we use the generalized potential function Φ(t) =

∑n
j=1 α

t
j · πt(j) for the dynamic

case, where the multipliers αj change over time so as to capture the moves of OPTdynamic.

Theorem 1.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/2√n).

Given the solution of OPTdynamic, we construct the solution Move-To-Front OPT (MTFOPT),
that at each round t moves et (the element OPTdynamic uses to cover St) in the first position
of the permutation. We compare the cost of MAE, with the cost of MTFOPT, which is just a
2-approximation of OPTdynamic (for the same reason than MTF is 2-competitive for list update
– see Lemma D.3 for a proof). More precisely, αtj = 1 if the element j is in one of the first c
positions of MTFOPT’s permutation at round t and αtj = 0 otherwise (the exact value of c will
be determined later).
Recall that the access cost of MAE at round t is kt. We have that at each round t ≥ 1,

kt + Φ(t)− Φ(t− 1) = kt +

n∑
j=1

αtj · πt(j)−
n∑
j=1

αt−1
j · πt−1(j)

= (1− αtet) · kt +
∑
j 6=et

αtj · (πt(j)− πt−1(j))

+

n∑
j=1

(αtj − αt−1
j) · πt−1(j)

≤ r · c+

 n∑
j=1

αtj − αt−1
j

︸ ︷︷ ︸

bounded by MTFOPT(t)

·n, (7)

26

where in the last inequality we used that αtet = 1 and that for each element, its position change
from round t− 1 to round t πt(j)− πt−1(j) can be at most r.

Lemma D.2. The term
∑n

j=1(αtj − α
t−1
j), which appears in the difference Φ(t) − Φ(t − 1) of

the potential function Φ(t) can be bounded by the moving cost of the MTFOPT(t) as follows:∑n
j=1(αtj − α

t−1
j) ≤ αtet − α

t−1
et ≤ MovingCost(MTFOPT(t))/c.

Proof. For the first part of the inequality, observe that from round t− 1 to round t, MTFOPT

only moves element et towards the beginning of the permutation. The latter implies, that for all
elements j 6= et, α

t
j ≤ α

t−1
j . For the second part of the inequality, observe that if αt−1

et = 0, then
by the definition of the coefficients, et does not belong in the first c positions (of MTFOPT’s
permutation) at round t − 1. Since at round t, MTFOPT moves et in the first position of the
list, MovingCost(MTFOPT(t)) ≥ c

Notice that the overall access cost of both MAE and MTFOPT is just m since at each round
t both of the algorithms admit an element, covering St, in the first position of the permutation.
As a result by setting c =

√
n/r and applying Lemma D.2,

Cost(MAE) = AccessCost(MAE) + MovingCost(MAE)

= m+ r
m∑
t=1

kt

≤ m+ 2r3/2√n
m∑
t=1

MovingCost(MTFOPT(t)) + Φ(0)− Φ(m)

≤ 2r3/2√n · Cost(MTFOPT) + Φ(0)− Φ(m) ≤ 2r3/2√nCost(MTFOPT).

The first inequality follows from inequality (7). The last inequality follows from the fact
that Φ(0) ≤ Φ(m) since at round 0 the permutations of MAE and MTFOPT are the same.
We complete the section with the proof of Lemma D.3, stating that Cost(MTFOPT) ≤ 2 ·
Cost(OPTdynamic).

Lemma D.3. For any sequence of requests (S1, . . . , Sm),

Cost(MTFOPT) ≤ 2 · Cost(OPTdynamic)

Proof. To simplify notation, let xt and yt respectively denote the permutations of MTFOPT and
OPTdynamic at round t. We will use as potential the function Φ(t) = dKT(xt, yt) i.e. the number
of inverted pairs between the permutation xt and yt. Let Lt denote the set of elements that
are on the left of et in permutation xt and on the left of et in permutation yt. Respectively, Rt
denotes the set of elements that are on the left of et in permutation xt, but on the right of et in
permutation yt. Clearly, at round t, MTFOPT pays Lt +Rt for moving cost and 1 for accessing
cost. At same time, OPTdynamic pays at least Lt + 1 for accessing cost and dKT(yt, yt−1) for
moving cost.

Cost(MTFOPT) + Φ(t)− Φ(t− 1) = Lt +Rt + 1 + dKT(xt, yt)− dKT(xt−1, yt)

+ dKT(xt−1, yt)− dKT(xt−1, yt−1)

≤ Lt +Rt + 1 + (Lt −Rt)
+ dKT(xt−1, yt)− dKT(xt−1, yt−1)

≤ 2 · (Lt + 1) + dKT(yt, yt−1)

27

The first inequality follows by the definition of the of the sets Rt and Lt, while the second by the
triangle inequality in the Kendall-tau distance dKT(·, ·). The proof is completed by summing
all over m and using the fact that dKT(x0, y0) = 0.

Lower bound. Next, we prove the following theorem showing a lower bound on MAE, which
nearly matches its upper bound.

Theorem 1.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

The constructed request sequence (S1, . . . , Sm) will have the following properties:

1. The size of every request St is r ≥ 3.

2. Every request forces the algorithm to pay an access cost of Ω(
√
n).

3. The request sequence contains Ω(
√
n) consecutive requests that share a common element,

which we call the pivot.

The first two properties ensure that MAE will pay Ω(r
√
n) moving cost on every request. The

third property will enable the optimal dynamic solution OPTdynamic to pay 1 access cost for
the consecutive requests that share the common element.

Before proceeding to formal details of the proof of Theorem 1.5, we will present the main
ideas of the construction. To this end, let π0 be the MAE’s initial permutation and think of it
as being divided into k + 2 blocks. The first block contains k + r − 1 elements and all other
blocks contain k elements, therefore n = k2 + 2k + r − 1. The “important” elements, which
the optimal dynamic solution uses to cover all requests, are the elements of the second and last
block initially. Meaning that the optimal dynamic solution can cover all requests using only the
2k “important” elements. Figure 1 depicts the structure of the initial permutation for k = 3
and r = 3, where “important” elements are colored red and green.

Block 1 Block 2 Block 3 Block 4 Block 5

Figure 1: The structure in blocks for k = 3 and r = 3. Blocks are drawn with thick red borders.
The elements that uses the optimal dynamic solution to cover the request sequence are colored
green and red and lie in the second and last block initially .

The following definition formalizes the concept of blocks discussed above. Blocks are defined in
terms of the indices of the permutation.

Definition D.5. Let π = (π0, . . . , πm) be a sequence of permutations, where each permutation
has size n = k2 + 2k + r − 1. We divide each permutation into k + 2 consecutive blocks
b1, b2, . . . bk+2, where a block is a set of consecutive indices in each permutation with |b1| =
k + r − 1 and |b2| = |b3| = . . . = |bk+2| = k. Therefore, b1 = [1, . . . , k + r − 1] and bi =
[(i− 1)k + r, . . . , ik + r − 1], for 2 ≤ i ≤ k + 2.

For ease of exposition, we will divide the analysis in phases, which are subdivided in rounds.
The first round starts with the request S1, which contains the last element of the permutation
π0 (pivot1) of the MAE algorithm and ends when pivot1 arrives in position k + r. Inductively,

28

Figure 2: The permutation of MAE before the start of a round and after k rounds, for k = 3
and r = 3. The elements of the second block have moved to the last block and vice versa.

at the start of a round j, Sj contains the last element of permutation πt and lasts until this
element arrives in position k + r. A phase ends after 2k such rounds and a new phase begins.
Formally:

Definition D.6. A phase defines the period, starting with k elements in block b2 and k elements
in block bk+2 and ending after 2k rounds of requests with these elements back in the blocks, where
they started. A round j starts when the adversary requests the last element , denoted as pivotj,
of the current permutation of MAE (with index k2 + 2k + r − 1) and ends when MAE places
this element in the first position of the second block b2 (with index k + r). The duration of the
round is the number of requests from the start of the round until the end of the round and will
be k + 1.

In order to describe the request sequence, we give the color green to k elements and the color
red to k other. These are the elements, used by OPTdynamic and every request contains one of
them. The rest of them are colored black. Let all the green elements be in the second block
(b2) and all red elements be in the last block (bk+2) initially. The request sequence may seem
complicated, however its constructed following two basic principles. The first is to decrease the
position of the pivot element (which is initially red) by k in the permutation and the second is
to increase the position of the k green elements by one on every request. This is easily achieved
by requests St of the form:

St = {πt(k + 1), πt(k + 2) . . . , πt(k + r − 2)︸ ︷︷ ︸
black

, element succeeding the green block︸ ︷︷ ︸
black

, pivot︸ ︷︷ ︸
red

}

Then, at the end of round j, pivotj will be in the first position of the second block and the green
elements will be in block j+ 2. After k rounds, all red elements will be in the second block and
all green elements will be in the last block, thus the adversary can repeat the request sequence
starting again from round 1. Figure 2 depicts the positions of the “important” elements at the
start of round 1 and at the end of round k.

The formal definition of the request sequence is shown in Algorithm 4.
Notice that the last request of round j places pivotj in the first position of block b2, just in

front of pivot elements of previous rounds. This way it is guaranteed that all k red elements
will be in b2 after k rounds. Moreover, at each round j > 1 there is a request (the (k− j+ 1)th)
that increases the positions of k− j+ 2 green elements by two, since they are passed from both
the element succeeding them and the pivot element (the other j − 2 elements are passed only
by the element succeeding the green block). Since, the adversary wants all green elements to
be in block j + 2 after round j, the next request does not move the k − j + 2 green elements
and the other j − 2 are moved because pivotj passes them (see Figure 3).

29

Algorithm 4 Adversarial request sequence

Let Sij = [p1, . . . , pr] be the i-th request of round j, where p1, . . . , pr denote the indices of the
requested elements in the current permutation of MAE. The request sequence for k consecutive
rounds is (every round has k + 1 requests):
Round 1. The ith request of round 1, for 1 ≤ i < k is:
Si1 = [k + 1, . . . , k + r − 2, 2k + r − 1 + i, k2 + 2k + r − 1− (i− 1)k]
and the two last requests of round 1 are:
Sk1 = [k + 1, . . . , k + r − 1, 3k + r − 1] and S(k+1)1 = [k, . . . , k + r − 2, 2k + r − 1].
Round j from 2 to k. The ith request of round j, for i /∈ {k − j + 2, k + 1} is :
Sij = [k + 1, . . . , k + r − 2, (j + 1)k + r − 1 + i, k2 + 2k + r − 1− (i− 1)k],
for the request i with i = k − j + 2 is :
Sij = [k + 1, . . . , k + r − 1, (j + 1)k + r − 1]
and for i = k + 1 is :
S(k+1)j = [k, . . . , k + r − 2, 2k + r − 1].
Then, the request sequence starts again from round 1.

The following lemma shows that MAE will arrive in a symmetric permutation after k rounds.

Lemma D.7. Let π be a permutation of definition D.5 at the start of a round and let X =
{x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk} be the elements in b2 and bk+2 respectively before the
start of a round. Then, after k rounds, MAE has moved the elements of Y in block b2 and the
elements of X in block bk+2.

Proof. We have to prove that after j rounds, j elements of Y will be in b2 and all elements of X
will be in bj+2. Observe that the only way to increase the index of an element e in a permutation
by c is to move c elements with higher index than e in the permutation to positions with lower
index than e (it increases by one if an element arrives at the position of e).

Let pivotj be the pivot element of round j, which by definition is the last element in the
permutation at the start of a round. After k requests to pivotj involving also the (k + 1)th
element and elements in positions that do not increase the index of pivotj , pivotj moves a total
of k2 positions to the left arriving in position 2k+ r− 1 of the current permutation. Then, the
last request of this round will move it to the first position of b2, moving the pivot element of
the previous phase to the second position of b2. By construction of the request sequence, pivotj
is the jth element of Y requested so far. Therefore, at the end of round j, j elements of Y will
be in the first j positions of b2 .

We now show that all elements of X will be in bj+2 at end of round j. Particularly, we show
inductively that at the beginning of jth round all elements of X are in block bj+1 and MAE
moves all elements of X to block bj+2 when the jth round ends.

Induction Base: In the first round, k requests contain the element succeeding X, r − 2
elements in positions k + 1, . . . , k + r − 2 of the permutation and an element, which has index
higher than k + r − 2 (which is pivot1) and does not change the positions of elements of X.
The (k+ 1)th request does not change the positions of elements of X, since it contains elements
with lower index. Therefore, the algorithm moves all elements of X exactly k positions to the
right and they will be in b3 when round 1 ends.

Inductive Step: For j > 1, we have k − 1 requests, where each of them forces the algorithm
to move elements of X one position to the right. However, there is exactly one request Sij with
i = k − j + 1, where k − j + 2 elements of X increase their positions by two. These elements
are passed by both the element succeeding X and the pivot element. The other j − 2 elements
are passed only by the element succeeding X, thus increasing their positions by one. Therefore,
the next request of the adversary (the k − j + 2-th) makes the algorithm move pivotj and the

30

elements in positions k + 1, . . . k + r − 1, therefore moving only the j − 2 elements of X one
position to the right and the other elements of X remain in their positions.

We conclude that at each round the elements of X move to the next right block. Since, they
are initially positioned in b2, after k rounds they end up in block bk+2.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Round 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Round 2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Round 3

Figure 3: Execution of MAE on the adversarial sequence for r = 3 and k = 3. The requested
positions in the list have yellow background and the arrows indicate the positions of the elements
after every request. For round j > 1, the ith request with i = k − j + 1 makes MAE increase
the position of k − j + 2 green elements by two. The next request is such that only the j − 2
remaining green elements increase their position by one.

We are now ready to provide the proof of Theorem 1.5

Theorem 1.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

Proof. We compute the costs paid by MAE and OPTdynamic after k rounds of a phase, since
the request sequence of Definition 4 is then repeated.

First, we bound the optimal cost. Initially, the optimal solution incurs a moving cost O(k ·n)
to move the 2k elements of b2 and bk+2 in the first 2k positions of its permutation. Then, at
the start of round j, it brings pivotj to the first position and incurs an access cost of 1 for k+ 1
consecutive requests. So, after k rounds it pays at most 2k2 moving cost plus k · (k + 1) access
cost, which sums to at most 4k2.

We now account the online cost. MAE pays r · k for the first k requests of each round and
r · (k− 1) for the last request. So, the total cost for k rounds is r · k · (k2 + k− 1) > r · k3. From
Lemma D.7, all elements of b2 are in bk+2 and all elements of bk+2 are in b2 after k rounds.

The adversary can repeat the same strategy to create an arbitrarily long request sequence.
Let l be the number of times the same k-round strategy is applied. We get that

Cost(MAE)

Cost(OPTdynamic)
≥ l · r · k3

4l · k2 +O(k · n)
→ Ω(k) .

The result follows for l→∞ and k = Ω(
√
n).

31

	1 Introduction
	1.1 Our Results
	1.2 Further Related Work
	1.3 Preliminaries

	2 Lower Bounds on the Deterministic Competitive Ratio
	3 An Algorithm with Asymptotically Optimal Competitive Ratio
	3.1 Using Multiplicative Weights Update in Online Min-Sum Set Cover
	3.2 Rounding
	3.3 The Lazy Rounding Algorithm

	4 A Memoryless Algorithm
	5 Dynamic Online Min-Sum Set Cover
	6 Concluding Remarks
	A Deferred Proofs of Section 2
	B Deferred Proofs of Section 3
	B.1 Proofs Related to MWU Algorithm
	B.2 Rounding
	B.3 Our Algorithm

	C Deferred Proofs of Section 4
	C.1 Lower Bound
	C.2 Upper Bound

	D Deferred Proofs of Section 5

