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Abstract

This work presents a novel graph neural network (GNN) framework for solving1

the maximum independent set (MIS) inspired by dynamic programming (DP).2

Specifically, given a graph, we propose a DP-like recursive algorithm based on3

GNNs that firstly constructs two smaller sub-graphs, predicts the one with the4

larger MIS, and then uses it in the next recursive call. To train our algorithm,5

we require annotated comparisons of different graphs concerning their MIS size.6

Annotating the comparisons with the output of our algorithm leads to a self-training7

process that results in more accurate self-annotation of the comparisons and vice8

versa. We provide numerical evidence showing the superiority of our method vs9

prior methods in multiple synthetic and real-world datasets.10

1 Introduction11

Deep neural networks (DNNs) have achieved unprecedented success in extracting intricate patterns12

directly from data without the need for handcrafted rules, while still generalizing well to new and13

previously unseen instances [He et al., 2016, Vaswani et al., 2017]. Among other applications,14

this success has led to the development of frameworks that utilize DNNs to solve combinatorial15

optimization (CO) problems, such as the Traveling Salesman Problem [Xing and Tu, 2020, Hu et al.,16

2020, Prates et al., 2019], the Job-Shop Scheduling Problem [Zhang et al., 2020, Park et al., 2021],17

and the Quadratic Assignment Problem [Nowak et al., 2017].18

A core challenge for deep learning approaches on CO is the lack of training data. Annotating19

such data requires the solution of a huge number of instances of the CO, hence such supervised20

learning approaches are computationally infeasible for NP-hard problems [Yehuda et al., 2020].21

Circumventing this difficulty is key to unlocking the full potential of otherwise broadly applicable22

DNNs for CO.23

Our work demonstrates how classical ideas in CO together with DNNs can lead to a scalable self-24

supervised learning approach, mitigating the lack of training data. Concretely, we focus on the25

Maximum Independent Set (MIS) problem: Given a graph G(V,E), MIS asks for a set of nodes of26

maximum cardinality such that no two nodes in the selected set are connected with an edge. MIS27

is an NP-hard problem with several hand-crafted heuristics (e.g., greedy heuristic, local search).28

More recently, several deep learning approaches have been proposed [Karalias and Loukas, 2020,29

Toenshoff et al., 2019, Schuetz et al., 2022a]30

Our approach involves the following steps to determine an MIS in a graph. We use graph neural31

networks (GNNs) [Wu et al., 2020] to enable a model to generate approximate maximum independent32

sets after training on data that was annotated by the model itself. For this purpose, we draw inspiration33

from dynamic programming (DP) and employ a DP-like recursive algorithm. Initially, we are given a34

graph. At each recursive step, we select a random vertex from that graph and create two sub-graphs:35

one by removing the selected vertex and another by removing all its neighboring vertices. We then36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



make a comparison between these sub-graphs to determine which sub-graph is likely to have a larger37

independent set, and we use the sub-graph with the highest estimated IS for the next recursive call.38

We repeat this process until we reach a graph consisting only of isolated vertices, which signifies the39

discovery of an independent set for the original graph.40

Dynamic programming guarantees that if our predictions are accurate (i.e., we select the sub-graph41

with the largest MIS value), our recursive algorithm will always result in a maximum independent set.42

To make accurate predictions, we introduce “graph comparing functions,” which take two graphs as43

input and output a winner. We implement such graph-comparing functions with GNNs.44

We adopt a self-training approach to train our graph-comparing function and optimize the parameters45

of the GNN. In each epoch, we update the graph-comparing function parameters to ensure it accurately46

fits the data it has seen so far. The data comprises pairs of graphs (G,G′) along with a label47

Label(G,G′) ∈ {0, 1}. For annotating the labels, we utilize the output of the recursive algorithm48

that leverages the graph-comparing function. Supported by theoretical and experimental evidence,49

we demonstrate how the self-annotation process improves parameter selection.50

We conduct a thorough validation of our self-training approach in three real-world graph distribution51

datasets. Our algorithm surpasses the performance of previous deep learning methods [Karalias and52

Loukas, 2020, Toenshoff et al., 2019, Ahn et al., 2020] in the context of the MIS problem. To further53

validate the efficacy of our method, we explore its robustness on out-of-distribution data. Notably,54

our results demonstrate that the induced algorithm achieves competitive performance, showcasing the55

generalization capability of the learned comparator across different graph structures and distributions.56

In addition, we extend the evaluation of our DP-based self-training approach to tackle the Minimum57

Vertex Cover (MVC) problem in Appendix E. Encouragingly, similar to the MIS case, our induced58

GNN-based algorithms for MVC admit competitive performance with respect to other deep-learning59

approaches.60

2 Related work61

Our work lies in the intersection of various domains, i.e., combinatorial optimization, Dynamic62

Programming, and (graph) neural networks. We review the most critical ideas in each domain here63

and defer a more detailed discussion in Appendix A.64

Graph Neural Networks (GNNs) have gained widespread popularity due to their ability to learn65

representations of graph-structured data [Xiao et al., 2022, Zhang and Chen, 2018, Zhu et al., 2021,66

Errica et al., 2019] invariant to the size of the graph. More complex architectural blocks, such as67

the Graph Convolutional Network (GCN) [Kipf and Welling, 2017, Zhang et al., 2019], the Graph68

Attention Network (GAT) [Veličković et al., 2017], and the Graph Isomorphism Network [Xu et al.,69

2018] have become influential instances of GNNs. In our work, we utilize a simple GNN architecture70

to showcase the effectiveness of our proposed framework. While our choice of architecture is71

intentionally simple, we emphasize its modular nature, which enables us to incorporate more complex72

GNNs with ease.73

Combinatorial optimization: Supervised learning approaches have been used for tackling CO tasks,74

such as the Traveling Salesman Problem (TSP) [Vinyals et al., 2015], the Vehicle Routing Problem75

(VRP) [Shalaby et al., 2021], and Graph Coloring [Lemos et al., 2019]. Due to the graph structure of76

the problems, GNNs are often used for tackling those tasks [Prates et al., 2019, Nazari et al., 2018,77

Schuetz et al., 2022b]. However, owing to the computational overhead of obtaining supervised labels,78

such supervised approaches often do not scale well. Instead, unsupervised approaches have been79

deployed recently [Wang and Li, 2023]. A popular approach relies on a continuous relaxation of the80

loss function [Karalias and Loukas, 2020, Wang et al., 2022, Wang and Li, 2023]. In contrast to the81

previous unsupervised works, we adopt Dynamic Programming techniques to diminish the overall82

time complexity of the algorithm. Another approach uses reinforcement learning (RL) methods to83

address CO tasks, such as in Covering Salesman Problem [Li et al., 2021], the TSP [Zhang et al.,84

2022], the VRP [James et al., 2019], and the Minimum Vertex Cover (MVC) [Tian and Li, 2021].85

However, applying RL to CO problems can be challenging because of the long learning time required86

and the non-differentiable nature of the loss function.87

Dynamic Programming has been a powerful problem-solving technique since at least the 50s [Bell-88

man, 1954]. In recent years, researchers have explored the use of deep neural networks (DNNs) to89
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replace the function responsible for dividing a problem into subproblems and estimating the optimal90

decision at each step [Yang et al., 2018]. Despite the progress, implementing CO tasks with Dynamic91

Programming suffers from significant computational overheads, since the size of the search space92

grows exponentially with the problem size [Xu et al., 2020]. Our approach overcomes this issue by93

utilizing a model that approximates the standard lookup table from Dynamic Programming, meaning94

that we avoid the exponential search space typically associated with DP.95

3 An optimal solution to Maximum Independent Set (MIS)96

Let us first introduce MIS and its relationship with Dynamic Programming.97

Notation: G(V,E) denotes an undirected graph where V stands for vertices and E for the edges.98

N (v) denotes the neighbors of vertex v ∈ V , N (v) = {u ∈ V : (u, v) ∈ E}. The degree of vertex99

v ∈ V is d(v) := |N (v)|. Given a set of vertices S ⊆ V , G/S denotes the remaining graph of G100

after removing all nodes v ∈ S.101

Definition 1 (Maximum Independent Set). Given an undirected graph G(V,E), find a maximum set102

of nodes S ⊆ V such that (u, v) /∈ E for all vertices u, v ∈ S. We denote with |MIS(G)| the size of103

the maximum independent set of graph G.104

Dynamic Programming is a powerful technique for algorithmic design in which the optimal solution105

of the instance of interest is constructed by combining the optimal solution of smaller sub-instances.106

The combination step is governed by local optimality conditions which, in the context of MIS, take107

the form of Theorem 1. Theorem 1 establishes that the decision to remove a node v ∈ V or its108

neighbors N (v) during the recursive process depends on whether |MIS (G/N (v))| ≥ |MIS(G/v) |.109

This decision continues until a graph with no edges is reached. According to Theorem 1, if at each110

step of the recursion, the choice is made based on whether |MIS (G/N (v))| ≥ |MIS(G/v) | or not,111

then the resulting empty graph is guaranteed to be an optimal solution. The proof is this theorem can112

be found in Appendix I.113

Theorem 1. Let a graph G(V,E) ∈ G. Then for any vertex v ∈ V with d(v) ≥ 1,114

|MIS(G)| = max (|MIS (G/N (v))|, |MIS(G/{v}) |) 1 .

4 Graph Neural Network-based Algorithm for MIS115

In this section, we present our approach for developing algorithms for MIS parameterized by116

parameters θ ∈ Θ. Initially in Sec. 4.1 we present how any graph-comparing function taking117

as input two different graphs and outputting a {0, 1} value can be used in the construction of an118

algorithm computing an independent set (not necessarily optimal). In Sec. 4.2 we present how Graph119

Neural Networks can be used in the construction of such graph-comparing functions. Finally, in120

Sec. 4.3, we present our inference algorithm that computes an independent set of any graph G ∈ G.121

4.1 MIS Algorithms induced by Graph Comparing Functions122

Consider a function CMP : G×G 7→ {0, 1} that compares two graphs G,G′ based on the size of their123

MIS. Namely, if |MIS(G)| ≥ |MIS(G′)| then CMP(G,G′) = 0 and CMP(G,G′) = 1 otherwise.124

Theorem 1 ensures that if we have access in such a graph-comparing function then we can compute125

an independent set of maximum size for any graph G. From a starting node v, with an initial126

graph from G, and by recursively selecting either G/{v} or G/N (v) based on |MIS(G/{v})| ≥127

|MIS(G/N (v))|, we are ensured to end in an independent set of maximum size. The decision of128

whether |MIS(G/{v})| ≥ |MIS(G/N (v))| at each recursive call can be made according to the129

output of CMP(G/{v}, G/N (v)).130

The cornerstone idea of our approach is that any graph-comparing function CMP induces such131

a recursive algorithm for a MIS. Recursively selecting G/{v} or G/N (v) based on the output132

of a graph generating function CMP(G/{v}, G/N (v)) ∈ {0, 1} always guarantees to reach an133

1Note: In the trivial case where G is an empty graph (i.e., it has no edges), the size of the maximum
independent set is |V |.
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Algorithm 1 Comparator-Induced Algorithm

1: function ACMP(G(V,E)) ▷ Algorithm ACMP(G) takes a graph G as input
2: if |E| = 0 then return V
3: end if
4: pick a vertex v ∈ V with d(v) > 0 uniformly at random.
5: G0 ← G \ {v} and G1 ← G \ N (v)

6: if CMP(G0, G1) = 0 then
7: G← G0 ▷ Remove vertex v
8: else
9: G← G1 ▷ Remove the neighbors of v

10: end if
11: return ACMP(G)
12: end function

independent set of the original graph. In case CMP(G,G′) ̸= I [|MIS(G)| < |MIS(G′)|], where I is134

the indicator function, it is not guaranteed that the computed independent set is of the maximum size.135

However, there might exist a reasonable graph comparing functions that i) are efficiently computable136

ii) lead to near-optimal solutions.137

In Definition 2 and Algorithm 1 we formalize the idea above.138

Definition 2. A comparator CMP : G × G 7→ {0, 1} is a function taking as input two graphs G,G′139

and outputing a {0, 1} value.140

Proposition 1. Any comparator CMP : G × G 7→ {0, 1} induces a randomized algorithm ACMP141

(Algorithm 1).142

Remark 1. Given a graph-comparing function CMP : G × G 7→ {0, 1}, the induced algorithm is143

randomized, since at Step 4 of Algorithm 1, a vertex v is randomly selected. Notice that Algorithm 1144

recursively proceeds until a subgraph with 0 edges is reached (see Step 2).145

Remark 2. Two different comparators CMP and CMP′ induce two difference algorithms ACMP146

and ACMP′
for estimating the maximum independent set.147

4.2 Comparators through Graph Neural Networks148

In this section, we discuss the architecture of a model Mθ : G 7→ R, parameterized by θ ∈ Θ, that is149

used for the construction of a comparator function150

CMPθ(G,G′) = I [Mθ(G) < Mθ(G
′)] .

In order to embed graph-level information, we introduce a new GNN module, which we refer to as151

the Graph Embedding Module (GEM). Unlike standard GNN modules, this module captures different152

semantic meanings of differing embeddings of a node, its neighbors, and anti-neighbors.153

Graph Embedding Module (GEM):154

The GEM operates using the following recursive formula:155

µk+1
v = LN

GELU

θk0µk
v

∥∥∥∥∥θk1 ∑
u∈N (v)

µk
u

∥∥∥∥∥θk2 ∑
u/∈N (v)

µk
u

 . (1)

Initially, all nodes in this graph have zeros embeddings µ0
v = 0⃗ ∈ R3p. Here, µ0

v denotes the initial156

embedding vector of node v. In Eq. (1), for all iterations k ∈ [0, . . . ,K − 1], the embeddings of a157

node denoted by µk
v ∈ R3p, its neighbors, and its anti-neighbors v are put through their own linear158

layers, denoted by θk0 , θ
k
1 , θ

k
2 ∈ Rp×3p, which are the parameters of the module. The bias term159

is omitted in the equation for readability purposes. We incorporate anti-neighbors in the GEM to160

capture complementary relationships between nodes. By using separate linear layers for different161
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 iterations

: Neighbors

: Anti-neighbors

Figure 1: Architecture of model Mθ(G). From left to right: initially, an input graph G is passed into
the model with zeros as node embeddings, which are displayed as white in the figure. The striped
green edges connect the anti-neighbors, which are also used in the GEM. After K iterations of the
GEM module, the final node embeddings are obtained. These are then averaged to obtain a graph
embedding µG. Finally, the graph embedding is put through multiple fully-connected layers to obtain
a final logit value for the input graph.

features, we emphasize the contrasting semantic meaning between neighbors and anti-neighbors,162

representing negative and positive relationships in the graph. Then, the individual feature embeddings163

are concatenated, which is denoted by [. . . ∥ . . . ], followed by a GELU activation function [Hendrycks164

and Gimpel, 2016] and layer normalization [Ba et al., 2016a].165

The complete model architecture is depicted in Fig. 1. At a high level, the architecture uses a Graph166

Embedding Module to extract a global graph embedding from the input graph, which is then passed167

through a set of fully connected layers to output a logit for that graph. During the training process of168

the comparator function, we utilize CMPθ(G,G′) = softmax ([Mθ(G)∥Mθ(G
′)]), which forms a169

differentiable loss function for classification.170

4.3 Inference Algorithm171

In the previous section, we discussed how a parameterization θ ∈ Θ defines the graph-comparing172

function CMPθ(G,G′) = I [Mθ(G) < Mθ(G
′)]. As a result, the same parameterization θ ∈ Θ173

defines an algorithm ACMPθ , where at Step 6 of Algorithm 1, the comparing function CMPθ is used.174

5 Self-Supervised Training through the Consistency Property175

In this section, we present our methodology for selecting the parameters θ ∈ Θ so that the resulting176

inference algorithm ACMPθ (·) computes independent sets with (close to) the maximum value.177

The most straightforward approach is to select the parameters θ ∈ Θ such that CMPθ(G,G′) ≃178

I [|MIS(G)| < |MIS(G′)|] using labeled data. The problem with this approach is that a huge amount179

of annotated data of the form {((G,G′), I [|MIS(G)| < |MIS(G′)|])} are required. Since finding the180

MIS is an NP-Hard problem, annotating such data comes with an insurmountable computational181

burden.182

The key idea to overcome the latter limitation is to annotate the data of the form {(G,G′)} by using183

the algorithmACMPθ (·) that runs in polynomial time with respect to the size of the graph. Intuitively,184

our proposed framework entails the optimization of the parameterized comparator function CMPθ185

on data generated using algorithm ACMPθ . A better comparator function leads to a better algorithm,186

which leads to better data, and vice versa. This mutually reinforcing relationship between the two187

components of our framework is theoretically indicated by Theorem 2 that we present in Section 5.1.188

The exact steps are detailed below.189

5.1 Consistent Graph Comparing Functions190

In this section, we introduce the notion of a consistent graph-comparing function (Definition 3) that191

plays a critical role in our self-supervised learning approach. Kindly take note that ACMP utilizes192

the unparameterized variant of a comparator function, whereas ACMPθ utilizes its parameterized193

counterpart.194
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Algorithm 2 Basic Pipeline of our Training Approach

1: Input: A distribution D over graphs.
2: Initialize parameters θ0 ∈ Θ.
3: Initialize a graph-buffer B ← ∅.
4: for each epoch t = 0, . . . , T − 1 do
5: Sample a graph Ginit ∼ D.
6: RunACMPθt (G) and store in B all graphs produced during each recursive call of Algorithm 1.
7: Update the parameters θt+1 ∈ Θ such that

θt+1 := argminθ∈ΘE(G,G′)∼B
[
ℓ
(
CMPθ(G,G′), I

[
E
[
|ACMPθt (G)|

]
< E

[
|ACMPθt (G′)|

]])]
8: end for

Definition 3 (Consistency). A graph-comparing function CMP : G×G 7→ {0, 1} is called consistent195

if and only if for any pair of graphs G,G′ ∈ G,196

CMP(G,G′) = 0 if and only if E
[∣∣ACMP(G)

∣∣] ≥ E
[∣∣ACMP(G′)

∣∣] .
197 Remark 3. In Definition 3 we use E

[∣∣ACMP(G)
∣∣] ,E [∣∣ACMP(G′)

∣∣] since, as we have already198

discussed, a comparator CMP induces a randomized algorithm ACMP.199

In Theorem 2, we formally establish that any consistent graph-comparing function CMP induces an200

optimal algorithm for the MIS.201

Theorem 2. Let a consistent comparator CMP : G × G 7→ {0, 1}. Then the algorithm ACMP(·)202

always computes a Maximum Independent Set, E
[∣∣ACMP(G)

∣∣] = |MIS(G)| for all G ∈ G.203

Theorem 2 guarantees that any consistent graph comparing function CMP induces an optimal204

algorithm ACMP for MIS. The proof for this theorem can be found in Appendix I. Hence, the205

selection of parameters θ⋆ ∈ Θ should be selected such that CMPθ⋆ is consistent. More precisely:206

Goal of Training: Find parameters θ⋆ ∈ Θ such that for all G,G′ ∈ G:207

CMPθ⋆(G,G′) = 0 if and only if E
[∣∣ACMPθ⋆ (G)

∣∣] ≥ E
[∣∣ACMPθ⋆ (G′)

∣∣] .

5.2 Training a Consistent Comparator208

The cornerstone idea of our self-supervised learning approach is to make the comparator more and209

more consistent over time. Namely, the idea is to update the parameters as follows:210

θt+1 := argminθ∈ΘEG,G′
[
ℓ
(
CMPθ(G,G′), I

[
E
[∣∣ACMPθt (G)

∣∣] < E
[∣∣ACMPθt (G′)

∣∣]])] (2)

where ℓ(·, ·) is a binary classification loss. In Eq. (2), θt are the fixed parameters of the previous211

epoch. Thus, in the next few paragraphs, we only use the notation ACMPθt to denote the fixed212

parameters. Gradient updates are only computed over θ.213

Remark 4. We remark that neither solving the non-convex minimization problem of Eq. (2) nor the214

existence of parameters θ⋆ ∈ Θ such that CMPθ⋆ can be guaranteed. However, using a first-order215

method for Eq. (2) and a large enough parameterization can lead to an approximately consistent216

comparator with approximately optimal performance.217

In Algorithm 2, we present the basic pipeline of the self-training approach that selects the parameters218

θ ∈ Θ such that the inference algorithm ACMPθt admits a competitive performance given as input219

graphs G following a graph-distributionD ⊆ G. However, while the basic pipeline of our self-training220

approach follows Algorithm 2, there are several differences and tweaks that we incorporate into our221

training process.222

Creating the graph buffer B: We are given a shuffled dataset of graphs D, which represents the223

training data for the model. The core difference between the pipeline and the training process224
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Step (1) Computing 
and populating 

Step (2) Creating dataset from samples in 

Computing  (roll-out)

Constructing dataset with pairwise samples

Figure 2: An example of data generation for the training. (Left) At the beginning of each training
epoch (Step 5), Algorithm 2 samples Ginit ∼ D and computes an independent set by using the
comparator CMPθt and by following the branches in the recursion tree that are marked red, with the
doubly circled one being the produced independent set. The generated graphs from this procedure
are added to the buffer B. (Right) Then, a dataset is created by sampling graphs from the buffer and
then computing an estimate of their MIS size (based on ACMPθt ). Based on this estimate, a dataset is
created with graph pairs (G,G′) and their corresponding binary labels denoting which MIS estimates
are larger.

comes from the graph buffer B. In Algorithm 2, this buffer stores any graph G that is found225

during the recursive call of ACMPθt (Ginit) on Ginit ∼ D (Step 6 of Algorithm 2). However, in226

the implementation of the graph buffer, it stores pairs of graphs (G,G′) that were generated by227

ACMPθt (Ginit), alongside a binary label that indicates which of the two graphs has a larger estimated228

MIS size. How this estimate is generated, will be explained further down this section.229

The training process: Prior to starting training, we first set two hyperparameters: one that specifies230

the number of graphs used to populate the buffer before training the model, and another that determines231

the number of graph pairs generated from ACMPθt (G) per graph G ∼ D. Then, a dataset is created232

by generating these pairs for the set number of graphs. The dataset is then added to the graph buffer,233

replacing steps 4, 5, and 6 in Algorithm 2, which only does this with one graph per epoch. Next,234

training starts, and after completing a set number of epochs, a new dataset is created using the updated235

model, and the process is repeated iteratively.236

Estimating the MIS: Finally, the loss function in Step 7 of Algorithm 2, also operates slightly237

differently. The main difference arises from I
[
E
[
|ACMPθt (G)|

]
< E

[
|ACMPθt (G′)|

]]
, since the238

estimates |MIS(G)| ≈ E
[
|ACMPθt (G)|

]
and |MIS(G′)| ≈ E

[
|ACMPθt (G′)|

]
are not directly239

utilized. Instead, we propose two other approaches, which are better approximations than the240

expectations used in Algorithm 2, since they use a maximizing operator.241

The first approach involves performing so-called "roll-outs" on the graph pairs generated G and242

G′ by ACMPθt , in order to estimate their MIS sizes. To perform the roll-outs, we simply run243

ACMPθt on graphs G and G′ m times and use the maximum size of the found independent244

sets as an estimate of their MIS. Formally, in a roll-out on a graph G, we sample the inde-245

pendent sets ISS1, ISS2, . . . , ISSm ∼ ACMPθt (G). Then, the estimate of the MIS size of G is246

max (|ISS1|, |ISS2|, . . . , |ISSm|).247

An example of the entire process of generating the dataset using roll-outs can be found in Fig. 2.248

Mixed roll-out variant: We introduce a variant of the aforementioned method, which utilizes the249

deterministic greedy algorithm. This greedy algorithm iteratively creates an independent set by250

removing the node with the lowest degree and adding it to the independent set. This algorithm is often251

an efficient approximation to the optimum solution. Our variant is constructed as follows: we compute252

the maximum between the roll-outs of the model and the result of the greedy algorithm, which creates253

a dataset with more accurate self-supervised approximations of the MIS values. This, in turn,254

generates binary targets for the buffer that are more likely to be accurate. Thus, for this second variant,255

the estimate of the MIS size of a graph G would be max (|Greedy(G)|, |ISS1|, |ISS2|, . . . , |ISSm|).256
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6 Experiments257

In this section, we conduct an evaluation of the proposed method for the MIS problem. Let us first258

describe the training setup, the baselines, and the datasets. Additional details and experiments on259

MIS are displayed in the Appendices C and D. Our method also generalizes well in MVC, as the260

results in Appendix E illustrate.261

6.1 Training setup262

Our model: We implement two comparator models: one using just roll-outs with the model, and263

another using the roll-outs together with greedy, called "mixed roll-out". We train each model264

using a graph embedding module with K = 3 iterations, which takes in 32-dimensional initial node265

embeddings.266

Baselines: We compare against the neural approaches Erdos GNN [Karalias and Loukas, 2020], RUN-267

CSP from Toenshoff et al. [2019], and a method specifically for the MIS problem: LwDMIS [Ahn268

et al., 2020]. Since we observe unexpected performance from RUN-CSP on the COLLAB and RB269

datasets, we have omitted those results from the table. We train every model for 300 epochs. Each270

experiment is performed on a single GPU with 6GB RAM.271

Besides neural approaches, we use traditional baselines, such as the Greedy MIS [Wormald, 1995] ,272

Simple Local Search [Feo et al., 1994] and a Random Comparator as a sanity check. Furthermore,273

we implement two mixed-integer linear programming solvers: SCIP 8.0.3 and the highly optimized274

commercial solver Gurobi 10.0.275

Datasets: We evaluate our model on three standard datasets, following Karalias and Loukas [2020]:276

COLLAB [Yanardag and Vishwanathan, 2015], TWITTER [Leskovec and Krevl, 2014] and RB [Xu277

et al., 2007, Toenshoff et al., 2019]. In addition, we introduce the SPECIAL dataset that includes278

challenging graphs for handcrafted approaches as we detail in Appendix C.279

6.2 Results280

Table 1 reports the average approximation ratios on the test instances of the various datasets. The281

approximation ratio is computed by dividing a solution’s independent set size by the optimum solution,282

which is computed using the Gurobi solver with a time limit of 1 hour per graph.283

The results indicate that the greedy algorithm performs strongly in three of the four datasets, which is284

consistent with the observation of Angelini and Ricci-Tersenghi [2022]. However, notice that our pro-285

posed approach outperforms the greedy in both the Twitter and the SPECIAL datasets, which validates286

that the greedy heuristic is not optimal in every case and is prone to failing in few cases. Importantly,287

among the neural approaches that are the main compared methods, our proposed method performs288

favorably in all datasets. The performance of our method indicates that the proposed self-training289

scheme is able to learn from diverse data distributions and generalize reasonably well in the test sets290

of the respective dataset. In addition, the proposed method is faster than the rest neural approaches.291

The mixed roll-out model in Table 1 outperforms the normal roll-out model in almost all datasets,292

indicating the effectiveness of the greedy heuristic in roll-outs. This is particularly evident in the RB293

dataset. However, for SPECIAL instances, the normal model performs marginally better, possibly294

due to the unsuitability of the greedy guiding heuristic as a baseline for this dataset.295

Out of distribution : We examine the performance of the learned comparator through its general-296

ization to new graph distributions. Concretely, we conduct an out-of-distribution analysis as follows:297

each model is trained in one graph distribution, indicated by the rows of Table 2. Then, the model298

is evaluated on different graph distributions, indicated by the columns of Table 2. The analysis is299

conducted on both our model and the approach of Erdos GNN [Karalias and Loukas, 2020].300

Surprisingly, our model trained over COLLAB displays good generalization skills across different301

datasets, even outperforming the RB-trained model on the RB dataset. Conversely, Erdos GNN trained302

over RB performs poorly over the COLLAB dataset. Both models trained over the RB dataset perform303

more poorly in general, likely due to the highly specific graph distribution of the RB dataset. Moreover,304

our model, on the whole, exhibits good generalization skills over different graph distributions.305
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Table 1: Test set approximation ratios (higher is better; the best performance in bold) on four datasets.
We report the average approximation ratios (along with std and time budget) on MIS. Notice that the
proposed method outperforms all the deep-learning-based approaches across datasets.

Method (↓) Dataset (→) RB COLLAB TWITTER SPECIAL

CMP (Normal Roll-outs) 0.770± 0.107
(0.43 s/g)

0.990± 0.051
(0.17 s/g)

0.967± 0.083
(0.35 s/g)

0.996± 0.029
(0.04 s/g)

CMP (Mixed Roll-outs) 0.836± 0.083
(0.36 s/g)

0.990± 0.049
(0.21 s/g)

0.977± 0.031
(0.21 s/g)

0.994± 0.035
(0.05 s/g)

Erdos’ GNN 0.813± 0.107
(1.39 s/g)

0.952± 0.142
(0.60 s/g)

0.935± 0.078
(1.37 s/g)

0.921± 0.218
(1.03 s/g)

LwDMIS 0.804± 0.089
(0.42 s/g)

0.978± 0.031
(0.17 s/g)

0.972± 0.032
(0.19 s/g)

0.828± 0.304
(0.32 s/g)

RUN-CSP (Accurate) − − 0.875± 0.053
(0.57 s/g)

0.946± 0.059
(0.51 s/g)

Greedy MIS 0.925± 0.053
(0.01 s/g)

0.998± 0.023
(0.02 s/g)

0.964± 0.048
(0.04 s/g)

0.131± 0.055
(0.03 s/g)

Random CMP 0.615± 0.155
(0.42 s/g)

0.817± 0.211
(0.30 s/g)

0.634± 0.182
(0.36 s/g)

0.225± 0.279
(0.41 s/g)

Simple Local Search (10s) 0.565± 0.237 0.860± 0.213 0.644± 0.218 0.188± 0.340
SCIP 8.0.3 (1s) 0.741± 0.351 0.999± 0.016 0.959± 0.024 1.000
SCIP 8.0.3 (5s) 0.937± 0.118 1.000 0.999± 0.024 1.000

Gurobi 10.0 (0.5s) 0.969± 0.070 0.981± 0.068 0.985± 0.085 0.940± 0.237
Gurobi 10.0 (1s) 0.983± 0.051 1.000 1.000 1.000
Gurobi 10.0 (5s) 0.999± 0.008 1.000 1.000 1.000

Table 2: Out-of-distribution approximation ratios during inference (higher is better). Every row
denotes a model trained on a specific dataset. Every column considers a different test dataset. The
CMP is trained using mixed roll-outs. Notice that the proposed method generalizes well in out-of-
distribution structures. This is indicative of the learned comparator extracting robust patterns.

Model (↓) Dataset (→) RB COLLAB TWITTER
CMP RB − 0.903± 0.186 0.668± 0.187

CMP COLLAB 0.856± 0.080 − 0.906± 0.094
CMP TWITTER 0.773± 0.101 0.927± 0.148 −
Erdos’ GNN RB − 0.361± 0.334 0.752± 0.188

Erdos’ GNN COLLAB 0.680± 0.071 − 0.592± 0.186
Erdos’ GNN TWITTER 0.746± 0.092 0.666± 0.385 −

7 Conclusion306

Motivated by the principles of Dynamic Programming, we develop a self-training approach for307

important CO problems, such as the Maximum Independent Set and the Minimum Vertex Cover.308

Our approach embraces the power of self-training, offering the dual benefits of data self-annotation309

and data generation. These inherent attributes are instrumental in providing an unlimited source of310

data indicating that the performance of the induced algorithms can be significantly improved with311

sufficient scaling on the computational resources. We firmly believe that a thorough investigation312

into the interplay between Dynamic Programming and self-training techniques can pave the way for313

new deep-learning-oriented approaches for demanding CO problems.314

Limitations: Our current empirical approach lacks theoretical guarantees on the convergence or the315

approximate optimality of the obtained algorithm. Additionally, the implemented GNN is using core316

modules, while more complex modules could result in further empirical improvements, which can be317

the next step in this direction.318
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