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Abstract
We study dynamic clustering problems from the
perspective of online learning. We consider
an online learning problem, called Dynamic k-
Clustering, in which k centers are maintained in
a metric space over time (centers may change po-
sitions) such as a dynamically changing set of r
clients is served in the best possible way. The con-
nection cost at round t is given by the p-norm of
the vector consisting of the distance of each client
to its closest center at round t, for some p ≥ 1
or p = ∞. We present a Θ (min(k, r))-regret
polynomial-time online learning algorithm and
show that, under some well-established compu-
tational complexity conjectures, constant-regret
cannot be achieved in polynomial-time. In ad-
dition to the efficient solution of Dynamic k-
Clustering, our work contributes to the long line
of research on combinatorial online learning.

1. Introduction
Clustering problems are widely studied in Combinatorial
Optimization literature due to their vast applications in Op-
erational Research, Machine Learning, Data Science and
Engineering (Williamson & Shmoys, 2011; Lin & Vitter,
1992; Charikar et al., 1999; Arya et al., 2001; Charikar &
Guha, 1999; Jain & Vazirani, 2001; Kumar, 2012; Young,
2000; Li & Svensson, 2016; Charikar & Li, 2012; Kumar
et al., 2010; Alamdari & Shmoys, 2018). Typically a fixed
number of centers must be placed in a metric space such that
a set of clients is served the best possible way. The quality
of a clustering solution is captured through the p-norm of
the vector consisting of the distance of each client to its
closest center, for some p ≥ 1 or p = ∞. For example
k-median and k-means assume p = 1 and 2 respectively,
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while k-center assumes p =∞ (Lin & Vitter, 1992; Kumar
et al., 2010; Alamdari & Shmoys, 2018).

Today’s access on vast data (that may be frequently updated
over time) has motivated the study of clustering problems
in case of time-evolving clients, which dynamically change
positions over time (de Keijzer & Wojtczak; Fotakis et al.,
2019; Eisenstat et al.; An et al., 2017). In time-evolving
clustering problems, centers may also change position over
time so as to better capture the clients’ trajectories. For
example, a city may want to reallocate the units perform-
ing rapid tests for Covid-19 so as to better serve neigh-
borhoods with more cases, the distribution of which may
substantially change from day to day. Other interesting ap-
plications of dynamic clustering include viral marketing,
epidemiology, facility location (e.g. schools, hospitals), con-
ference planning etc. (Stehlé et al., 2011; Eisenstat et al.;
Newman, 2003; Pastor-Satorras & Vespignani, 2001; Tan-
tipathananandh et al., 2007).

Our work is motivated by the fact that in most settings of
interest, clients can move in fairly complicated and unpre-
dictable ways, and thus, an a-priori knowledge on such
trajectories is heavily under question (most of the previous
work assumes perfect knowledge on clients’ positions over
time (Eisenstat et al.; An et al., 2017; de Keijzer & Wojtczak;
Fotakis et al., 2019)). To capture this lack of information
we cast clustering problems under the perspective of on-
line learning (Hazan, 2016). We study an online learning
problem called Dynamic k-Clustering in which a learner
selects at each round t, the positions of k centers trying to
minimize the connection cost of some clients, the positions
of which are unknown to the learner prior to the selection
of the centers.

Online Learning Problem 1 (Dynamic k-Clustering).
Given a metric space d : V × V 7→ R≥0. At each round t,

1. The learner selects a set Ft ⊆ V , with |Ft| = k, at
which centers are placed.

2. The adversary selects the positions of the clients, de-
noted as Rt (after the selection of the positions of the
centers by the learner).
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3. The learner suffers the connection cost of the clients,

CRt(Ft) =

∑
j∈Rt

d(j, Ft)
p

1/p

where d(j, Ft) is the distance of client j to the closest
center, d(j, Ft) = mini∈Ft dij .

Based on the past positions of the clients R1, R2, . . . , Rt−1

an online learning algorithm must select at each round t, a
set of k centers Ft ⊆ V such that the connection cost of the
clients over time is close to the connection cost of the opti-
mal (static) solution F ∗. If the cost of the online learning
algorithm is at most α times the cost of F ∗, the algorithm
is called α-regret, whereas in case α = 1, the algorithm
is called no-regret (Hazan, 2016). Intuitively, a low-regret
online learning algorithm converges to the optimal positions
of the centers (with respect to the overall trajectories of the
clients) by just observing the clients’ dynamics.
Example 1. The clients are randomly generated ac-
cording to a time-varying uniform distribution with ra-
dius 0.3 and center following the periodic trajectory(
sin( 2π·t

T ), cos( 2π·t
T )
)

for t = 1, . . . , T . The centers placed

by a (sufficiently) low-regret algorithm would converge to
positions similar in structure to the ones illustrated in Fig-
ure 1 (for k = 1, 2, 4 and k = 8) which are clearly close to
the optimal (static) solution for the different values of k.

Efficient Online Learning for Dynamic k-Clustering.
The existence of no-regret online learning algorithms for
Dynamic k-Clustering immediately follows by standard re-
sults in online learning literature (Hazan, 2016). Dynamic
k-Clustering is a special case of Learning from Expert Ad-
vice problem for which the famous Multiplicative Weights
Update Algorithm achieves no-regret (Hazan, 2016). Unfor-
tunately using the MWU for Dynamic k-Clustering is not
really an option due to the huge time and space complexity
that MWU requires. In particular MWU keeps a different
weight (probability) for each of the possible

(|V |
k

)
possible

placements of the k centers, rendering it inapplicable even
for small values of |V | and k.

Our work aims to shed light on the following question.

Figure 1: The figure depicts the actual centers at which a
low-regret algorithm, that we subsequently propose, con-
verges. For further details see Section 6.

Question 1. Is there an online learning algorithm for
Dynamic k-Clustering that runs in polynomial time and
achieves α-regret?

Our Contribution and Techniques. We first show that
constant regret cannot be achieved in polynomial time for
Dynamic k-Clustering. In particular we prove that any
O(1)-regret polynomial-time online learning algorithm for
Dynamic k-Clustering implies the existence of an O(1)-
approximation algorithm for the Minimum-p-Union prob-
lem (Chlamtác et al., 2016). Recent works on the the-
ory of computational complexity establish that unless well-
established cryptographic conjectures fail, there is no O(1)-
approximation algorithm for Min-p-Union (Chlamtác et al.,
2016; Applebaum, 2012; Chlamtáč et al., 2017). This re-
sult narrows the plausible regret bounds achievable in poly-
nomial time, and reveals an interesting gap between Dy-
namic k-Clustering and its offline counterparts, which admit
polynomial-time O(1)-approximation algorithms.

Our main technical contribution consists of polynomial-
time online learning algorithms for Dynamic k-Clustering
with non trivial regret bounds. We present a Θ(k)-regret
polynomial-time deterministic online learning algorithm
and a Θ(r)-regret polynomial-time randomized online learn-
ing algorithm, where r is the maximum number of clients
appearing in a single round (r = max1≤t≤T |Rt|). Combin-
ing these algorithms, one can achieve Θ (min(k, r))-regret
for Dynamic k-Clustering, which (to the best of our knowl-
edge) is the first guarantee on the regret achievable in poly-
nomial time. The regret bounds above are independent of
the selected p-norm, and hold for any p ≥ 1 and for p =∞.

At a technical level, our approach consists of two major
steps. In the first step, we consider an online learning prob-
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lem, that can be regarded as the fractional relaxation of the
Dynamic k-Clustering (see Section 3), where the fractional
connection cost is given by the optimal value of an appro-
priate convex program and the action space of the learner
is the |V |-dimensional simplex. For this intermediate prob-
lem, we design a no-regret polynomial-time online learning
algorithm through the use of the subgradients of the frac-
tional connection cost. Since the fractional connection cost
comes as the solution of an appropriate convex program,
the subgradient vectors do not admit a closed form and it
is not clear whether they can be efficiently computed. A
key idea of ours was to show that the subgradient vectors
can be computed in polynomial time via the solution of the
dual program of the fractional connection cost. We remark
that the latter idea extends from the context of the online
k-clustering and it may be used in the design of efficient
low-regret algorithms in other combinatorial domains.

In the second step of our approach (see Section 4 and Sec-
tion 5), we provide computationally efficient online (de-
terministic and randomized) rounding schemes converting
a vector lying in the |V |-dimensional simplex (the action
space of Fractional Dynamic k-Clustering) into k locations
for the centers on the metric space V (the action space of
Dynamic k-Clustering).

In Section 4, we present a deterministic rounding scheme
that, combined with the no-regret algorithm for Fractional
Dynamic k-Clustering, leads to a Θ(k)-regret polynomial-
time deterministic online learning algorithm for the original
Dynamic k-Clustering. Interestingly, this regret bound is
approximately optimal for all deterministic algorithms. In
Section 5, we show that combining the no-regret algorithm
for Fractional Dynamic k-Clustering with a randomized
rounding scheme proposed in (Charikar & Li, 2012)1 leads
to a Θ(r)-regret randomized algorithm running in polyno-
mial time. Combining these two online learning algorithms,
we obtain a Θ(min(k, r))-regret polynomial-time online
learning algorithm for Dynamic k-Clustering, which is the
main technical contribution of this work. Finally, in Sec-
tion 6, we present the results of an experimental evaluation,
indicating that for client locations generated in a variety of
natural and practically relevant ways, the realized regret of
the proposed algorithms is way smaller than Θ (min(k, r)).

Remark 1. Our two-step approach provides a structured
framework for designing polynomial-time low-regret algo-
rithms in various combinatorial domains. The first step
extends far beyond the context of Dynamic k-Clustering and
provides a systematic approach to the design of polynomial-
time no-regret online learning algorithms for the fractional
relaxation of the combinatorial online learning problem
of interest. Combining such no-regret algorithms with on-

1This randomized rounding scheme was part of a 4-
approximation algorithm for k-median (Charikar & Li, 2012)

line rounding schemes, which convert fractional solutions
into integral solutions of the original online learning prob-
lem, may lead to polynomial time low-regret algorithms for
various combinatorial settings. Obviously, designing such
rounding schemes is usually far from trivial, since the spe-
cific combinatorial structure of each specific problem must
be taken into account.

Related Work. Our work relates with the research line of
Combinatorial Online Learning. There exists a long line
of research studying low-regret online learning algorithms
for various combinatorial domains such that online routing
(Helmbold et al., 1997; Awerbuch & Kleinberg, 2008), selec-
tion of permutations (Takimoto & Warmuth, 2000; Yasutake
et al.; Fotakis et al., 2020; Ailon; Helmbold & Warmuth), se-
lection of binary search trees (Takimoto & Warmuth, 2003),
submodular optimization (Hazan & Kale, 2012; Jegelka &
Bilmes; Streeter & Golovin), matrix completion (Hazan
et al., b), contextual bandits (Agarwal et al.; Dudı́k et al.,
b) and many more. Finally, in combinatorial games agents
need to learn to play optimally against each other over com-
plex domains (Immorlica et al., 2011; Dehghani et al., 2016).
As in the case of Dynamic k-Clustering in all the above on-
line learning problems, MWU is not an option, due to the
exponential number of possible actions.

Another research direction of Combinatorial Online Learn-
ing studies black-box reductions converting polynomial time
offline algorithm (full information on the data) into polyno-
mial time online learning algorithms. (Kalai & Vempala,
2003) showed that any (offline) algorithm solving optimally
and in polynomial time the objective function, that the Fol-
low the Leader framework suggests, can be converted into
a no-regret online learning algorithm. (Kakade et al.) ex-
tended the previous result for specific class of online learn-
ing problems called linear optimization problems for which
they showed that any α-approximation (offline) can be con-
verted into an α-regret online learning algorithm. They
also provide a surprising counterexample showing that such
black-box reductions do not hold for general combinatorial
online learning problems. Both the time efficiency and the
regret bounds of the reductions of (Kalai & Vempala, 2003)
and (Kakade et al.) were subsequently improved by (Rahma-
nian & Warmuth; Suehiro et al.; Koolen et al., 2010; Balcan
& Blum, 2006; Dudı́k et al., a; Hazan & Koren; Fujita et al.;
Garber; Hazan et al., a). We remark that the above results do
not apply in our setting since Dynamic k-Clustering can nei-
ther be optimally solved in polynomial-time nor is a linear
optimization problem.

Our works also relates with the more recent line of research
studying clustering problems with time-evolving clients.
(Eisenstat et al.) and (An et al., 2017) respectively pro-
vide Θ (log(nT )) and O(1)-approximation algorithm for
a generalization of the facility location problem in which
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clients change their positions over time. The first difference
of Dynamic k-Clustering with this setting is that in the for-
mer case there is no constraint on the number of centers that
can open and furthermore, crucially perfect knowledge of
the positions of the clients is presumed. More closely re-
lated to our work are (de Keijzer & Wojtczak; Fotakis et al.,
2019), where the special case of Dynamic k-Clustering on
a line is studied (the clients move on a line over time). De-
spite the fact that both works study online algorithms, which
do not require knowledge on the clients’ future positions,
they only provided positive results for k = 1 and 2. Finally
our work relates with (Cohen-Addad et al., 2019) which
studies efficient low-regret online learning algorithms for
Online k-means Clustering. Online k-means Clustering is
the special case of Online k-Clustering at which the 2-norm
(p = 2) is considered and the clients lie on the Euclidean
space. Moreover in Online k-means Clustering only one
client arrives at each round (r = 1 in our notation). Our
results are much more general, since they hold for any p-
norm (even for p = ∞) and general metric spaces while
our regret-bound O(min(k, r)) shows how regret scales as
r = #clients per round increases. A dependence on r is
inevitable since (as we show) no-constant regret is possible
in poly-time for general r.

2. Preliminaries and Our Results
In this section we introduce notation and several key notions
as long as present the formal statements of our results.

We denote by D the diameter of the metric space, D =
maxi∈V,j∈V dij . We denote with n the cardinality of the
metric space (|V | = n) and with r the maximum number of
clients appearing in a single round, r = max1≤t≤T |Rt|.
Finally we denote with ∆k

n the n-dimensional simplex,
∆k
n = {y ∈ Rn :

∑
i∈V yi = k and yi ≥ 0}.

Following the standard notion of regret in online learning
(Hazan, 2016), we provide the formal definition of an α-
regret online learning algorithm for Dynamic k-Clustering.

Definition 1. An online learning algorithm for the Dynamic
k-Clustering is α-regret if and only if for any sequence of
clients’ positions R1, . . . , RT ⊆ V ,

T∑
t=1

CRt(Ft) ≤ α· min
|F∗|≤k

T∑
t=1

CRt(F
∗)+Θ

(
poly(n,D) · T β

)
where F1, . . . , FT are the positions of the centers produced
by the algorithm for the sequence R1, . . . , RT and β < 1.

Next, we introduce the Minimum-p-Union problem, the
inapproximability results of which allow us to establish that
constant regret cannot be achieved in polynomial time for
Dynamic k-Clustering.

Problem 1 (Min−p−Union). Given a universe of elements
E and a collection of sets U = {S1, . . . , Sm} where Si ⊆
E. Select U′ ⊆ U such that |U′| = p and | ∪Si∈U′ Si| is
minimized.

As already mentioned, the existence of an O(1)-
approximation algorithm for Min−p−Union violates sev-
eral widely believed conjectures in computational com-
plexity theory(Chlamtác et al., 2016; Applebaum, 2012;
Chlamtáč et al., 2017). In Theorem 1 we establish the fact
that the exact same conjectures are violated in case there ex-
ists an online learning algorithm for Dynamic k-Clustering
that runs in polynomial-time and achieves O(1)-regret.

Theorem 1. Any c-regret polynomial-time online learn-
ing algorithm for the Dynamic k-Clustering implies a
(c + 1)-approximation polynomial-time algorithm for
Min−p−Union.

In Section 4, we present a polynomial-time deterministic
online learning algorithm achieving Θ(k)-regret.

Theorem 2. There exists a 6k-regret deterministic online
learning algorithm for Dynamic k-Clustering that runs in
polynomial time (Algorithm 4). More precisely,

T∑
t=1

CRt(Ft) ≤ 6k· min
|F∗|=k

T∑
t=1

CRt(F
∗)+Θ

(
kDn

√
log nT

)
where F1, . . . , FT are the positions in which Algorithm 4
places the centers for the sequence of clients’ positions
R1, . . . , RT .

In Theorem 3 we prove that the Θ(k) bound on the regret
of Algorithm 4 cannot be significantly ameliorated with
deterministic online learning algorithm even if the algorithm
uses exponential time and space.

Theorem 3. For any deterministic online learning algo-
rithm for Dynamic k-Clustering problem, there exists a
sequence of clients R1, . . . , RT such as the regret is at least
k + 1.

Proof. Let the metric space be composed by k + 1 points
with the distance between any pair of (different) points
being 1. At each round t, there exists a position at which the
learner has not placed a facility (there are k+1 positions and
k facilities). If the adversary places one client at the empty
position of the metric space, then the deterministic online
learning algorithm admits overall connection cost equal to
T . However the optimal static solution that leaves empty the
position with the least requests pays at most T/(k+ 1).

In Section 5 we present a randomized online learning algo-
rithm the regret of which depends on the parameter r.
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Theorem 4. There exists a Θ(r)-regret randomized algo-
rithm that runs in polynomial time (Algorithm 5). For any
sequence of clients’ positions R1, . . . , RT with |Rt| ≤ r,

T∑
t=1

E [CRt(Ft)] = 4r · min
|F∗|=k

T∑
t=1

CRt(F
∗)

+ Θ
(
kDn

√
log nT

)
where Ft is the random variable denoting the k positions at
which Algorithm 5 places the centers at round t.

By combining Algorithm 4 and Algorithm 5 we can achieve
Θ (min(k, r))-regret in polynomial time.

Theorem 5. There exists an online learning algorithm for
Dynamic k-Clustering that runs in polynomial-time and
achieves min (6k, 4r)-regret.

Remark 2. In case the value r = min1≤t≤T |Rt| is ini-
tially known to the learner, then Theorem 5 follows directly
by Theorem 2 and 4. However even if r is not initially
known, the learner can run a Multiplicative Weight Update
Algorithm that at each round follows either Algorithm 4 or
Algorithm 5 with some probability distribution depending
on the cost of each algorithm so far. By standard results
for MWU (Hazan, 2016), this meta-algorithm admits time-
average cost less than the best of Algorithm 4 and 5.

3. Fractional Dynamic k-Clustering
In this section we present the Fractional Dynamic k-
Clustering problem for which we provide a polynomial-time
no-regret online learning algorithm. This online learning
algorithm serves as a primitive for both Algorithm 4 and Al-
gorithm 5 of the subsequent sections concerning the original
Dynamic k-Clustering.

The basic difference between Dynamic k-Clustering and
Fractional Dynamic k-Clustering is that in the second case
the learner can fractionally place a center at some point of
the metric space V . Such a fractional opening is described
by a vector y ∈ ∆k

n.

Online Learning Problem 2. [Fractional Dynamic k-
Clustering]At each round t ≥ 1,

1. The learner selects a vector yt ∈ ∆k
n. The value yti

stands for the fractional amount of center that the
learner opens in position i ∈ V .

2. The adversary selects the positions of the clients de-
noted by Rt ⊆ V (after the selection of the vector
yt).

3. The learner incurs fractional connection cost
FCRt(yt) described in Definition 2.

Definition 2 (Fractional Connection Cost). Given the posi-
tions of the clients R ⊆ V , we define the fractional connec-
tion cost FCR(·) of a vector y ∈ ∆k

n as the optimal value
of the following convex program.

minimize
(∑

j∈R β
p
j

)1/p

s.t. βj =
∑
i∈V

dij · xij ∀j ∈ R∑
i∈V

xij = 1 ∀j ∈ R

xij ≤ yi ∀j ∈ R, ∀i ∈ V
xij ≥ 0 ∀j ∈ R, ∀i ∈ V

(1)

It is not hard to see that once the convex program of Def-
inition 2 is formulated with respect to an integral vector
y ∈ ∆k

n (yi is either 0 or 1) the fractional connection cost
FCR(y) equals the original connection cost CR(y). As a
result, the cost of the optimal solution y∗ ∈ ∆n

k of Frac-
tional Dynamic k-Clustering is upper bounded by the cost
of the optimal positioning of the centers F ∗ in the original
Dynamic k-Clustering.

Lemma 1. For any sequence of clients’ positions
R1, . . . , RT , the cost of the optimal fractional solution y∗

for Fractional Dynamic k-Clustering is smaller than the cost
of the optimal positioning F ∗ for Dynamic k-Clustering,

min
y∗∈∆k

n

T∑
t=1

FCRt(y
∗) ≤ min

|F∗|=k

T∑
t=1

CRt(F
∗)

Lemma 1 will be used in the next sections where the online
learning algorithms for the original Dynamic k-Clustering
are presented. To this end, we dedicate the rest of this
section to design a polynomial time no-regret algorithm for
Fractional Dynamic k-Clustering. A key step towards this
direction is the use of the subgradient vectors of FCRt(·).

Definition 3 (Subgradient). Given a function f : Rn 7→ R,
a vector g ∈ Rn belongs in the subgradient of f at point
x ∈ Rn,g ∈ ∂f(x), if and only if f(y) ≥ f(x)+g>(y−x) ,
for all y ∈ Rn.

Computing the subgradient vectors of functions, as com-
plicated as FCRt(·), is in general a computationally hard
task. One of our main technical contributions consists in
showing that the latter can be done through the solution of
an adequate convex program corresponding to the dual of
the convex program of Definition 2.

Lemma 2. Consider the convex program of Definition 2
formulated with respect to a vector y ∈ ∆k

n and the clients’
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positions R. Then the following convex program is its dual.

maximize
∑
j∈RAj −

∑
i∈V

∑
j∈R kij · yi

s.t. ||λ||∗p ≤ 1
dij · λj + kij ≥ Aj ∀i ∈ V, j ∈ R
kij ≥ 0 ∀i ∈ V, j ∈ R

(2)

where || · ||∗p is the dual norm of || · ||p

In the following lemma we establish the fact that a sub-
gradient vector of ∂FCRt(·) can be computed through the
optimal solution of the convex program in Lemma 2.

Lemma 3. Let k∗ij denote the value of the variables kij
in the optimal solution of the convex program in Lemma 2
formulated with respect to vector y ∈ ∆k

n and the clients’
positions R. Then for any vector y′ ∈ ∆k

n,

FCRt(y
′) ≥ FCRt(y) +

∑
i∈V

−∑
j∈R

k∗ij

 · (y′i − yi)
Moreover there exists an Θ(r · |V |) algorithm for solving
the dual program (Algorithm 1) and additionally |k∗ij | ≤ D.

Algorithm 1 A time-efficient algorithm for solving the dual
program of Lemma 2

1: Input: A vector y ∈ ∆k
n and a set of clients R ⊆ V .

2: Output: An optimal solution for the convex program
of Lemma 2.

3: for each client j ∈ R, do
4: Sort the nodes i ∈ V in increasing order according

to dij .
5: Rem← 1
6: for each each i ∈ V do
7: xij ← min(yi,Rem).
8: Rem← Rem− xij .
9: end for

10: end for
11: for each client j ∈ R do
12: V +

j ← {i ∈ V : xij > 0} and Dj ← maxi∈V +
j
dij .

13: βj ←
∑
i∈V dij · xij

14: λj ←
[

βj
||β||p

]p−1

15: Aj ← λj ·Dj

16: kij ← min
(
λj · xijyi · (Dj − dij) , 0

)
17: end for

Remark 3. Algorithm 1 is not only a computationally effi-
cient way to solve the convex program of Lemma 2, but most
importantly guarantees that the value k∗ij are bounded by D
(this is formally stated and proven in Lemma 2). The latter
property is crucial for developing the no-regret algorithm
for Fractional Dynamic k-Clustering.

Up next we present the no-regret algorithm for Fractional
Dynamic k-Clustering.

Algorithm 2 A no-regret algorithm for Fractional Dynamic
k-Clustering

1: Initially, the learner selects y1
i = k/n for all i ∈ V .

2: for rounds t = 1 · · ·T do
3: The learner selects yt ∈ ∆k

n.
4: The adversary selects the positions of the clients

Rt ⊆ V .
5: The learner receives cost, FCRt(yt).
6: The learner runs Algorithm 1 with input yt and Rt

and sets gti = −
∑
j∈Rt k

t
ij

7: for each i ∈ V do
8:

yt+1
i =

yti · e−εg
t
i∑

i∈V y
t
i · e−εg

t
i

where ε =
√

logn

Dr
√
T

9: end for
10: end for

We conclude the section with Theorem 6 that establishes the
no-regret property of Algorithm 2 and the proof of which is
deferred to the Appendix B.

Theorem 6. Let y1, . . . , yT be the sequence of vectors
in ∆k

n produced by Algorithm 2 for the clients’ positions
R1, . . . , RT . Then,

T∑
t=1

FCRt(yt) ≤ min
y∗∈∆k

T∑
t=1

FCRt(y
∗)+Θ

(
kDn

√
log nT

)

4. A Θ(k)-Regret Deterministic Online
Learning Algorithm

In this section we show how one can use Algorithm 2 de-
scribed in Section 3 to derive Θ(k)-regret for the Dynamic
k-Clustering in polynomial-time.

The basic idea is to use a rounding scheme that given a
vector y ∈ ∆k

n produces a placement of the k centers Fy ⊆
V (with |Fy| ≤ k) such that for any set of clients’ positions
R, the connection cost CR(Fy) is approximately bounded
by the factional connection cost FCR(y). This rounding
scheme is described in Algorithm 3.

Lemma 4. [Rounding Lemma] Let Fy denote the positions
of the centers produced by Algorithm 3 for input y ∈ ∆k

n.
Then the following properties hold,

• For any set of clients R,

CR(Fy) ≤ 6k · FCR(y)
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Algorithm 3 Deterministic Rounding Scheme

1: Input: A vector y ∈ ∆k
n.

2: Output: A set Fy ⊆ V at which centers are opened.
3: Run Algorithm 1 with input y and R = V .
4: Sort the positions i ∈ V according to the values βi

produced by Algorithm 1.
5: Fy ← ∅
6: for i = 1 to V do
7: if minj∈Fy dij > 6k · βi then
8: Fy ← Fy ∪ {i}
9: end if

10: end for

• The cardinality of Fy is at most k, |Fy| ≤ k.

Up next we show how the deterministic rounding scheme
described in Algorithm 3 can be combined with Algorithm 2
to produce an Θ(k)-regret deterministic online learning al-
gorithm that runs in polynomial-time. The overall online
learning algorithm is described in Algorithm 4 and its regret
bound is formally stated and proven in Theorem 2.

Algorithm 4 A Θ(k)-regret deterministic online learning
algorithm for Dynamic k-Clustering

1: for rounds t = 1 · · ·T do
2: The learner computes the vector yt ∈ ∆k

n by running
Algorithm 2 for the sequence of clients’ positions
(R1, . . . , Rt−1).

3: The learner places centers to the positions Fyt pro-
duced by Algorithm 3 given input yt.

4: The adversary selects the clients’ positions Rt ⊆ V .
5: The learner suffers connection cost CRt(Fyt)
6: end for

We conclude the section with the proof of Theorem 2 in
which the regret bounds of Algorithm 4 are established.

Proof of Theorem 2. The second case of Lemma 4 ensures
that |Ft| ≤ k and thus Algorithm 4 opens at most k facilities
at each round. Applying the first case of Lemma 4 for
R = Rt we get that CRt(Ft) ≤ 6k · FCRt(yt). As a result,

T∑
t=1

CRt(Ft) ≤
T∑
t=1

6k · FCRt(yt)

≤ 6k min
y∗∈∆k

T∑
t=1

FCRt(y
∗) + Θ

(
kDn

√
log nT

)
where the last inequality follows by Theorem 6. However
Lemma 1 ensures that

min
y∗∈∆k

T∑
t=1

FCRt(y
∗) ≤ min

F∗:|F∗|=k

T∑
t=1

CRt(F
∗)

5. A Θ(r)-Regret Randomized Online
Learning Algorithm

In this section we present a Θ(r)-regret randomized online
learning algorithm. This algorithm is described in Algo-
rithm 5 and is based on the randomized rounding developed
by Charikar and Li for the k-median problem (Charikar &
Li, 2012).

Lemma 5 ((Charikar & Li, 2012)). There exists a
polynomial-time randomized rounding scheme that given a
vector y ∈ ∆k

n produces a probability distribution, denoted
as CL(y), over the subsets of V such that,

1. with probability 1 exactly k facilities are opened,
PF∼CL(y) [|F | = k] = 1.

2. for any position j ∈ V ,

EF∼CL(y)

[
C{j}(Fy)

]
≤ 4 · FC{j}(y).

Similarly with the previous section, combining the random-
ized rounding of Charikar-Li with Algorithm 1 produces a
Θ(r)-regret randomized online learning algorithm that runs
in polynomial-time.

Algorithm 5 A Θ(r)-regret randomized online learning
algorithm

1: for rounds t = 1 · · ·T do
2: The learner computes the vector yt ∈ ∆k

n by running
Algorithm 2 for the sequence of clients’ positions
(R1, . . . , Rt−1).

3: The learner places centers to the positions Ft ⊆ V
produced by the Charikar-Li randomized rounding
with input yt, Ft ∼ CL(yt).

4: The adversary selects a request Rt ⊆ V .
5: The learner suffers connection cost CRt(Ft)
6: end for

The proof of Theorem 4 that establishes the regret bound
of Algorithm 5 follows by Lemma 5 and Theorem 6 and is
deferred to the Appendix D.

6. Experimental Evaluations
In this section we evaluate the performance of our online
learning algorithm against adversaries that select the posi-
tions of the clients according to time-evolving probability
distributions. We remark that the regret bounds established
in Theorem 2 and Theorem 4 hold even if the adversary
maliciously selects the positions of the clients at each round
so as to maximize the connection cost. As a result, in case
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clients arrive according to some (unknown and possibly
time-varying) probability distribution that does not depend
on the algorithm’s actions, we expect the regret of to be way
smaller.

In this section we empirically evaluate the regret of Algo-
rithm 4 for Dynamic k-Clustering in case p = ∞. We
assume that at each round t, 20 clients arrive according to
several static or time-varying two-dimensional probability
distributions with support on the [−1, 1] × [−1, 1] square
and the possible positions for the centers being the dis-
cretized grid with ε = 0.1. In order to monitor the quality
of the solutions produced by Algorithm 4, we compare the
time-average connection cost of Algorithm 4 with the time-
average fractional connection cost of Algorithm 2. Theo-
rem 6 ensures that for T = Θ(k2D2/ε2) the time-average
fractional connection cost of Algorithm 2 is at most ε greater
than the time-average connection cost of the optimal static
solution for Dynamic k-Clustering. In the following sim-
ulations we select ε = 0.1 and track the ratio between the
time-average cost of Algorithm 4 and of Algorithm 2 which
acts as an upper bound on the regret.

Uniform Square In this case the 20 clients arrive uniformly
at random in the [−1, 1]×[−1, 1] square. Figure 2 illustrates
the solutions at which Algorithm 4 converges for k = 2, 3
and 8 as long as the achieved regret.

Figure 2: The green curve depicts the time-average connec-
tion cost Algorithm 4, the red curve depicts the time-average
fractional connection cost of Algorithm 2 and the blue curve
depicts their ratio that acts as an upper bound on the regret.

Uniform Distribution with Time-Evolving Centers In
this case the 20 clients arrive according to the uniform
distribution with radius 0.3 and a time-varying center that
periodically follows the trajectory described in Example 1.
Figure 1 depicts the centers at which Algorithm 4 converges
after 100k2 rounds which are clearly close to the optimal
ones.

Moving-Clients on the Ellipse In this case the 20

clients move in the ellipse
(
x

1.2

)2
+
(
y

0.6

)2
= 1

with different speeds and initial positions. The
position of client i is given by (xi(t), yi(t)) =
(1.2 cos(2πfit+ θi), 0.6 sin (2πfit+ θi)) where each
fi, θi was selected uniformly at random in [0, 1]. Figure 3
illustrates how Algorithm 4 converges to the underlying
ellipse as the number of rounds increases.

Figure 3: The solution produced by Algorithm 4 for k = 8
after 100, 1000 and 10000 rounds.

Mixture of Multivariate Guassians In this case 15 clients
arrive according to the Gaussian with µ1 = (−0.7, 0.7) and
Σ1 = [[0.3, 0], [0, 0.3]] and 5 according to the Gaussian
with µ2 = (0.7,−0.7) and Σ2 = [[0.3, 0], [0, 0.3]]. All
the clients outside the [−1, 1]× [−1, 1] are projected back
to the square. Figure 4 illustrates the solutions at which
Algorithm 4 converges for k = 2, 8 and 16.

7. Conclusion
This work studies polynomial-time low-regret online learn-
ing algorithms for Dynamic k-Clustering, an online learning
problem capturing clustering settings with time-evolving
clients for which no information on their locations over time
is available. We show that, under some well-established
conjectures, O(1)-regret cannot be achieved in polynomial
time and we provide a Θ(min(k, r))-regret polynomial time
algorithm with r being the maximum number of clients ap-
pearing in a single round. At a technical level, we present a
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Figure 4: On the left, the solutions which Algorithm 4
converges for k = 2, 8 and k = 16. On the right, the time-
average cost of Algorithm 4, Algorithm 2 and the regret
bounds.

two-step approach where in the first step we provide a no-
regret algorithm for the Fractional Dynamic k-Clustering
while in the second step we provide online rounding scheme
converting the sequence of fractional solutions, produced
by the no-regret algorithm, into solutions of Dynamic k-
Clustering. Applying the same approach to other combi-
natorial online learning problems is an interesting research
direction.
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Appendix

A. Proof of Theorem 1
Problem 2 (k − CenterUniform). Given a uniform metric space d : V × V 7→ R≥0 (d(u, v) = 1 in case (u 6= v)) and a
set of requests R1, . . . , Rm ⊆ V . Select F ⊆ V such as |F | = k and

∑m
s=1 CRs(F ) is minimized where p is∞.

Lemma 6. Any c-approximation algorithm for k − CenterUniform implies a c-approximation algorithm for Min− p−
Union.

Proof. Given the collection U = {S1, . . . , Sm} of the Min− p−Union, we construct a uniform metric space V of size m,
where each node of V corresponds to a set Si.

For each elements e ∈ E of the Min − p − Union we construct a request Re ⊆ V for the k − CenterUniform that is
composed by the nodes corresponding to the sets Si that containt e. Observe that due to the uniform metric and the fact that
p =∞, for any V ′ ⊆ V ∑

e∈E
CRe(V

′) = | ∪Si /∈V ′ Si|

Lemma 7. Any polynomial time c-regret algorithm for the online k-Center implies a (c + 1)-approximation algorithm
(offline) for the k − CenterUniform.

Proof. Let assume that that there exists a polynomial-time online learning algorithm such that for any request sequence
R1, . . . , RT ,

T∑
t=1

E[CRt(Ft)] ≤ c min
|F∗|=k

T∑
t=1

E[CRt(F
∗)] + Θ(poly(n,D) · Tα)

for some α < 1.

Now let the requests lie on the uniform metric, p =∞ and that the adversary at each round t selects uniformly at random
one of the requests R1, . . . , Rm that are given by the instance of k − CenterUniform. In this case the above equation takes
the following form,

T∑
t=1

1

m

m∑
s=1

E[CRs(Ft)] ≤ c
T

m

m∑
s=1

E[CRs(OPT∗)] + Θ(nβ · Tα)

where OPT∗ is the optimal solution for the instance of k − CenterUniform and Ft is the random set that the online
algorithm selects at round t.

Now consider the following randomized algorithm for the k − CenterUniform.

1. Select uniformly at random a t from {1, . . . , T}.

2. Select a set F ⊆ V according to the probability distribution Ft.

The expected cost of the above algorithm, denoted by E[ALG], is

1

T

T∑
t=1

m∑
i=1

EF∼Ft [CRi(F )] = m ·

(
1

T

T∑
t=1

m∑
i=1

1

m
EF∼Ft [CRi(F )]

)

≤ c ·m
T
· T
m

m∑
i=1

CRi(OPT∗)

+ Θ

(
m · nβ

T 1−α

)
By selecting T = Θ(m

1
1−α · n

β
1−α ) we get that E[ALG] ≤ (c+ 1) ·OPT∗.
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B. Omitted Proof of Section 3
B.1. Proof of Lemma 2

The Langragian of the convex program of Definition 2 is,

L(β, y, x,A, k, λ) =

∑
j∈R

βpj

1/p

+
∑
j∈R

λj · (dijxij − βj) +
∑
j∈R

Aj ·

(
1−

∑
i∈V

xij

)
+

∑
i∈V

∑
j∈V

kij · (xij − yi)−
∑
i∈V

∑
j∈R

µij · xij

Rearranging the terms we get,

L(β, y, x,A, k, λ) =
∑
j∈R

Aj −
∑
i∈V

∑
j∈R

kij · yi

+
∑
i∈V

∑
j∈R

xij · (kij − µij + dij · λj −Aj)

+

∑
j∈R

βpj

1/p

−
∑
j∈R

λj · βj

In order for the function g(A, k, λ) = minβ,y,x,M+,M− L(β, y, x,A, k, λ) to get a finite value the following constraints
must be satisfied,

• kij + dij · λj −Aj = µij

• ||λ||∗p ≤ 1 since otherwise
(∑

j∈R β
p
j

)1/p

−
∑
j∈R λj · βj can become −∞.

Using the fact that the Lagragian multipliers µij ≥ 0, we get the constraints of the convex program of Lemma 2. The
objective comes from the fact that once g(A, k, λ) admits a finite value then g(A, k, λ) =

∑
j∈RAj −

∑
i∈V

∑
j∈R kij · yi.

B.2. Proof of Lemma 3

Let λ∗j , A
∗
j , k
∗
ij denote the values of the respective variables in the optimal solution of the convex program of Lemma 2

formulated with respect to the vector y = (y1, . . . , yn). Respectively consider λ′j , A
′
j , k
′
ij denote the values of the respective

variables in the optimal solutions of the convex program of Lemma 2 formulated with respect to the vector y′ = (y′1, . . . , y
′
n).

FCR(y′) =
∑
j∈R

A′j −
∑
i∈V

∑
j∈R

k′ij · y′i (3)

≥
∑
j∈R

A∗j −
∑
i∈V

∑
j∈R

k∗ij · y′i (4)

=
∑
j∈R

A∗j −
∑
i∈V

∑
j∈R

k∗ij · y′i +
∑
i∈V

∑
j∈R

k∗ij · yi −
∑
i∈V

∑
j∈R

k∗ij · yi (5)

= FCR(y) +
∑
i∈V

∑
j∈R

k∗ij · (yi − y′i) (6)

Equations 5 and 6 follow by strong duality, more precisely FCR(y) =
∑
j∈RA

∗
j −

∑
i∈V

∑
j∈R k

∗
ij · yi since the

convex program of Lemma 2 is the dual of the convex program the solution of which defines FCR(y′) (respectively for
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FCR(y′) =
∑
j∈RA

′
j −

∑
i∈V

∑
j∈R k

′
ij · y′i). Equation 4 is implied by the fact that the solution (λ′, k′, A′) is optimal

when the objective function is
∑
j∈RAj −

∑
i∈V

∑
j∈R kij · y′i. Notice that the constraints of the convex program in

Lemma 2 do not depend on the y-values. As a result, the solution (λ∗, k∗, A∗) (that is optimal for the dual convex program
formulated for y) is feasible for the dual program formulated for the values y′. Thus Equation 4 follows by the optimality of
(λ′, k′, A′).

Up next we prove the correctness of Algorithm 1. Notice that the the solution β, x that Algorithm 1 constructs is feasible for
the primal convex program of Definition 2. We will prove that the dual solution that Algorithm 1 constructs is feasible for
the dual of Lemma 2 while the exact same value is obtained.

• ||λ||∗p = 1: It directly follows by the fact that λj =
[

βj
||β||p

]p−1

and ||λ||∗p =
[∑

j∈R λ
p
p−1

j

] p−1
p

.

• dij · λj + kij ≥ Aj : In case dij < D∗j , Algorithm 1 implies that xij = yi and the inequality directly follows. In case
dij ≤ D∗j the inequality holds trivially since kij = 0.

Now consider the objective function,

∑
j∈R

Aj −
∑
i∈V

∑
j∈R

yi · kij =
∑
j∈R

Aj −
∑
j∈R

∑
i∈V +

j

yi · kij

=
∑
j∈R

λj ·Dj −
∑
j∈R

∑
i∈V +

j

yi

[
λj ·

xij
yi

(Dj − dij)
]

=
∑
j∈R

λj
∑
i∈V +

j

dij · xij (7)

=
∑
j∈R

λj · βj

=

∑
j∈R

βpj

1/p

where Equation 8 follows by the fact that xij = 0 for all j /∈ V +
j and thus

∑
j∈V +

j
xij = 1. Finally notice that |λj | ≤ 1 and

thus kij ≤ D where D is the diameter of the metric space.

B.3. Proof of Theorem 6

By Lemma 3, |gti | = | −
∑
j∈Rt k

t∗
ij | ≤ Dr since |Rt| ≤ r. Applying Theorem 1.5 of (Hazan, 2016) we get that

T∑
t=1

∑
i∈V

gti(y
t
i − y∗i ) ≤ Θ

(
kDr

√
log nT

)
Applying Lemma 3 for y′ = y∗,

T∑
t=1

(
FCRt(y

t)− FCRt(y
∗)
)
≤

T∑
t=1

∑
i∈V

gti(y
t
i − y∗i ) ≤ Θ

(
kDr

√
log nT

)

C. Omitted Proof of Section 4
C.1. Proof of Lemma 4

The following claim trivially follows by Step 10 of Algorithm 4.

Claim 1. For any node j ∈ V , d(j, Fy) ≤ 6k · β∗j .
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We are now ready to prove the first item of Lemma 4. Let a request R ⊆ V ,

CR(Fy) =

∑
j∈R

d(j, Fy)p

1/p

≤

∑
j∈R

(6k)p · β∗pj

1/p

= 6k ·

∑
j∈R

β∗pj

1/p

We proceed with the second item of Lemma 4. For a given node j ∈ S, let Bj = {i ∈ V : dij ≤ 3k · β∗j }. It is not hard to
see that for any j ∈ Fy , ∑

i∈Bj

yi ≥ 1− 1

3k

Observe that in case the latter is not true then
∑
i/∈Bj x

∗
ij ≥ 1

3k , which would imply that β∗j > β∗j .

The second important step of the proof is that for any j, j′ ∈ Fy ,

Bj ∩Bj′ = ∅.

Observe that in case there was m ∈ Bj ∩ Bj′ would imply d(j,m) ≤ 3k · β∗j and d(j′,m) ≤ 3k · β∗j′ . By the triangle
inequality we get d(j, j′) ≤ 6k · β∗j′ (without loss of generality β∗j ≤ β∗j′). The latter contradicts with the fact that both j
and j′ belong in set Fy .

Now assume that |Fy| ≥ k + 1. Then
∑
i∈Fy yi ≥ |Fy| · (1−

1
3k ) ≥ (k + 1) · (1− 1

3k ) > k. But the latter contradicts with
the fact that

∑
i∈V yi = k. As a result, |Fy| ≤ k.

D. Omitted Proofs of Section 5
Proof of Theorem 4. To simplify notation the quantity EF∼CL(yt)[CRt(F )] is denoted as E[CRt(Ft)]. At first notice that
by the first case of Lemma 5, Algorithm 5 ensures that exactly k facilities are opened at each round t.

Concerning its overall expected connection cost we get,

E [CRt(Fyt)] ≤
∑
j∈Rt

E[C{j}(Fyt)] ≤ 4
∑
j∈Rt

FC{j}(yt)

where the fist inequality is due to the fact that
∑
j∈Rt d(j, F )p ≤

(∑
j∈Rt d(j, F )

)p
and the second is derived by applying

the second case of Lemma 5. We overall get,

T∑
t=1

E[CRt(Fyt)] ≤ 4

T∑
t=1

∑
j∈Rt

FC{j}(yt)

≤ 4

T∑
t=1

|Rt| · FCRt(yt) (8)

≤ 4rmin
y∗

T∑
t=1

FCRt(y
∗)

+ Θ
(
kDr

√
log nT

)
≤ 4r min

|F∗|=k

T∑
t=1

E[CRt(F
∗)]

+ Θ
(
kDr

√
log nT

)
where inequality 3 follows by the fact that FC{j}(y) ≤ FC{R}(y) for all j ∈ R and the last two inequalities follow by
Theorem 6 and Lemma 1 respectively.


