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ABSTRACT
Participation in permissionless blockchains results in competition

over system resources, which needs to be controlled with fees. Until

recently, Ethereum’s fee mechanism was implemented via a first-

price auction that resulted in unpredictable fees as well as other

inefficiencies. Launched on August 5, 2021, EIP-1559 is an improved

proposal that introduces a number of innovative features such as a

dynamically adaptive basefee that is burnt, instead of being paid to

the miners. Despite intense interest in understanding its properties,

several basic questions such as whether and under what conditions

does this protocol self-stabilize have remained elusive thus far.

We perform a thorough analysis of the resulting fee market dy-

namic mechanism via a combination of tools from game theory

as well as dynamical systems. We start by providing bounds on

the step-size of the base-fee update rule that suffice for global con-

vergence to equilibrium via Lyapunov arguments. In the negative

direction, we show that for larger step-sizes instability and even

formal Li-Yorke chaos are possible under a wide range of settings.

We complement these topological results with quantitative bounds

on the possible range of basefees. We conclude our analysis with a

thorough experimental case study that corroborates our theoretical

findings.

CCS CONCEPTS
• Networks→ Network economics; Network dynamics; • The-
ory of computation → Algorithmic game theory and mecha-
nism design; Machine learning theory; • Applied computing →
Online auctions.

KEYWORDS
Ethereum, EIP-1559, transaction fee markets, auctions, market dy-

namics
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1 INTRODUCTION
The emergence of decentralized, Turing-complete blockchains, such

as Ethereum [24], ushered in the possibility of creating alterna-

tive economic systems, where traditional institutions (such as ex-

changes, banks, e.t.c.) are implemented in open-source code and

where the state of the system/universal computer is stored in an

immutable public blockchain. The extreme versatility of such sys-

tems, at least in terms of their fundamental capabilities, naturally

raises a lot of critical design considerations as these abstract ideas

are fleshed out into concrete implementations. Moreover, as partic-

ipation in these systems steadily increases over time, these initial

designs face novel demands and some careful adaptation becomes

necessary.

Arguably, one of the most critical real-world design decisions

in Ethereum, as well as in any other programmable blockchain, is

how the protocol decides on the costs/rewards structure for the

different types of participating entities. The protocol charges users

fees for having their transactions processed by the network and

included in the blockchain. These transactions fees are typically

referred to as “gas fees". These fees are then distributed to the

miners rewarding them for dedicating computational resources to

preserving the safety of the blockchain.

Ethereum’s traditional fee system has been recognized as an im-

portant design challenge. The issue primarily lies on the decision to

set fees by using a simple first price auction mechanism. Effectively,

all users submit their bids in regards to how much they are willing

to pay to have their transactions included in the blockchain and

the miners typically select the highest priced entries for inclusion

given the block capacity constraints. Due to the non-truthful na-

ture of first price auctions, choosing an appropriate bidding fee is a

non-trivial task and users can end up significantly overpaying for

system participation.

From a traditional mechanism design perspective, the solution to

the aforementioned problem seems relatively straightforward: Re-

place the first price auction with either a Vickrey – Clarke – Groves

1
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(VCG) auction [17, 23] or a (generalized) second price auction [6, 15],

which reduce the strategic complexity on the side of the bidders,

lead to more efficient outcomes and are known to work well in

practice (e.g., internet advertising). Unfortunately, such approaches

can be easily exploited and gamed by miners who can artificially

increase demands for their blocks, increasing the resulting fees

while decreasing meaningful system participation. Moreover, such

mechanisms are vulnerable to collusion [1, 10].

Recently, a new proposal (EIP-1559) has been put forward to

address these issues [4, 19].
1
A key aspect of this mechanism is

the introduction of a basefee that is automatically adjusted by the
protocol depending on how congested the network is. This basefee

effectively plays the role of a reserve price, matching supply and

demand. Critically, this basefee is burned, which prevents the emer-

gence of perverse incentives where miners can extract increased

fees from the users by acting dishonestly. Users seeking fast inclu-

sion of their transactions can supplement the basefee with a tip,

which is the only fee that is received by the miners. An economic

analysis of EIP-1559 has identified desirable properties, e.g., it is

incentive compatible for myopic miners and as well as for users

except during time periods with excessively low base fees [21, 22]. Of
course, to provide insights about whether such conditions will be

satisfied in practice an economic analysis alone is not sufficient

as one needs to explicitly analyze the dynamic evolution of the

mechanism parameters over time. This raises our driving ques-

tion: Under which conditions do the EIP-1559 dynamics self-stabilize?
When these conditions are not satisfied how complex, unpredictable
can the resulting behavior be?

Our results. We perform both a theoretical as well as exper-

imental analysis of the dynamics and stability properties of the

EIP-1559 protocol. In particular, we investigate not only sufficient

conditions for network stability and convergence to equilibrium

but furthermore, we provide for the first-time to our knowledge a

stress-test type of analysis where we push the system parameters

past its stable range and prove phase transitions/bifurcations as

well as the formal onset of chaos.

Our main observation is that the basefee adjustment parameter

(step-size) has a critical impact in the stability of the system. In

the theoretical part of the paper (Section 3), we provide threshold

bounds for the step-size which allow the system to stabilize (Theo-

rem 3.6). For larger values of the step-size (or of the other critical

parameters of the system, transaction demand and user valuations),

we show that the basefee dynamics may become formally chaotic

(Theorem 3.12). However, even in this unstable regime, the basefee

remains within a bounded region and is relatively well behaved.

By contrast, adverse effects are observed in the block occupancies

(which may oscillate between their extremes, full to empty and vise

versa).

On the experimental side we validate our theoretical findings by

showcasing high variance periods where blocks alternate between

full and empty state and basefee spikes up and down, using a fee

market simulation library with agent-based components (Section 4).

We first look at the impact of three variables on the prevalence of

these high variance periods: the demand variance, or how “noisy”

1
EIP-1559 was launched on the Ethereum mainnet as part of the London hard fork on

August 5, 2021 [2, 11].

the demand process is; the initial condition of the demand process,

from just enough to fill blocks entirely to twice that demand; and

the tolerance of the transaction pool eviction policy, with more

tolerant pools keeping transactions even as their fee cap stands

at a lower value than the basefee. We find all three variables posi-

tively correlate with more appearances of high variance periods,

highlighting the forces inducing variance in the fee market. We

additionally find that using stricter pool eviction policies hurts

user efficiency and miner revenue, casting doubt on the incentive

compatibility of this strategy to yield more stable basefee updates.

2 MODEL
Our description of the model consists of two parts. The first de-

scribes the transaction fee mechanism of EIP1559 with a special

focus on the dynamic adjustment of the basefee (Section 2.1) and

the second describes the assumptions concerning agents’ behavior

that we study in this paper (Sections 2.2 and 2.3).

2.1 Transaction Fee Market and EIP1559
We consider a blockchain-enabled economy in which users make

transactions over a distributed network.
2
Users submit their trans-

actions to a common pool together with a bid which specifies how

much they are willing to pay for the computational resources that

are required for their transactions to be processed. The transactions,

along with the bids, are viewed by the miners who select which

transactions to include in the blocks that they create. In existing

mechanisms (including Ethereum’s current economic model), bids

comprise a single transaction fee. Miners can sort the transactions

and typically select the ones with the highest fees. The miner who

will include a transaction in a valid block receives the entire fee in

a process that closely resembles a generalized first price auction.

According to the proposed reform of EIP1559, bids comprise two

elements (𝑓 , 𝑝): (i) the feecap, 𝑓 , which is the maximum amount

that the user is willing to pay for their transaction to be processed,

and (ii) the premium, 𝑝 , which is the maximum tip that the user

is willing to pay to the miner who will eventually process their

transaction. In particular, a user who will get their transaction

included in the blockchain will never pay more than the feecap and

the miner who will process the transaction will never receive more

than the premium.

The main element of EIP1559 and its main difference from exist-

ing mechanisms is the stipulation of a dynamically adjusted basefee,
𝑏𝑡 , 𝑡 > 0, where 𝑡 denotes the block height. Every transaction that

gets included in a block 𝐵𝑡 , 𝑡 > 0 needs to pay the basefee, 𝑏𝑡 , that

is valid at that block. Instead of being transferred from the user to

the miner, the basefee is burnt, i.e., it is permanently removed from

the circulating supply of the native currency (e.g., ETH). For each

included transaction, miners will receive the minimum between

the premium and the difference between the feecap and the basefee.

Specifically, the miner’s tip is defined by

miner’s tip := min {𝑓 − 𝑏𝑡 , 𝑝}. (1)

2
Our analysis is based on the Ethereum blockchain. However, there are other

blockchains, such as Filecoin [12], that implement very similar mechanisms and the

main ideas of our results (up to technical details) readily extend to these settings as

well.

2
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Blocks have size 𝑇 and, in EIP1559, a target block load 𝑇 /2.
3
Let

𝑔𝑡 denote the number of transactions that get included in block 𝐵𝑡 .

Since 𝑔𝑡 depends on the basefee, 𝑏𝑡 , we will write 𝑔𝑡 | 𝑏𝑡 to denote

the transactions that get included in 𝐵𝑡 given that the basefee is

equal to 𝑏𝑡 . The basefee is updated after every block according to

the following equation

𝑏𝑡+1 = 𝑏𝑡

(
1 + 𝑑 · 𝑔𝑡 | 𝑏𝑡 −𝑇 /2

𝑇 /2

)
, for any 𝑡 ∈ N. (2)

where 𝑑 denotes an adjustment factor (or step size), currently set

at 𝑑 = 0.125 [16, 20]. Equation (2) suggests that the basefee will

increase if the load of block 𝐵𝑡 is larger than the target block load,

i.e., if there is increasing demand or congestion in the system, and

will decrease otherwise. The magnitude of the change is regulated

by the excess (shortage) of transaction load compared to the target

load (currently 𝑇 /2) and parameter 𝑑 . Our main goal in this paper

is to analyze the stability and properties of the dynamical system

that is determined by equation (2).

2.2 Behavioral Model: Miners and Users
In general, we will assume that users (transactions) arrive to the

pool according to a random process. We will write 𝑁𝑡 to denote the

random number of transactions that arrive between two consecu-

tive blocks 𝐵𝑡 , 𝐵𝑡+1 for 𝑡 ≥ 0. We assume that 𝑁𝑡 ∼ P(𝜆𝑇 ) for any
𝑡 ≥ 0, where P(𝜆) denotes the Poisson distribution of parameter

𝜆𝑇 . To avoid trivial cases, we will assume that 𝜆 > 1/2, i.e., that the

arrival rate is larger than the target block load. For the theoretical

analysis, we will assume that users leave the pool if their transac-

tion is not included in the next block and return according to the

specified arrival process.
4
Whenever necessary, we will index users

(transactions) with 𝑖, 𝑗 ∈ N.
As mentioned above, miners view all transactions in the pool

along with their bids, (𝑓 , 𝑝), and decide which transactions to in-

clude in the blocks that they mine. We assume that miners are

willing to process transactions only if the fees that they receive are

at least some commonly known 𝜖 > 0. This is due to the intrinsic

marginal cost for miners to include the transaction. For instance,

each transaction increases the size (in bytes) of the block and its

propagation time over the network of miners, leading to an increase

in the risk of producing a stale block (called uncle).5 Thus, miners

will select a transaction to be included in block 𝐵𝑡 if 𝑓 ≥ 𝑏𝑡 + 𝜖 ,

and 𝑝 ≥ 𝜖 , i.e., if the feecap is large enough to cover both the

basefee and the minimum acceptable premium for miners, and the

premium is large enough to satisfy the miner’s tip. These conditions

are summarized in the following minimum inclusion requirement

miner’s tip = min {𝑓 − 𝑏𝑡 , 𝑝} ≥ 𝜖. (3)

Finally, each user 𝑖 ∈ N has a valuation 𝑣𝑖 which is drawn from some

common (for all users) distribution function 𝑣 ∼ 𝐹 with strictly

positive support 𝑆 ⊆ R+. For convenience, we assume throughout

3
Size is measured in gas, i.e., typically𝑇 denotes the gas limit. Here, we express all

measurements in units per gas, so under the assumption that all transactions use the

same amount of gas, one may think of𝑇 as number of transactions.

4
This assumption only reduces unnecessary complexities in the analysis and is relaxed

in the simulations without significant effect in the results.

5
It is expected for user wallets to encode this default 𝜖 in their fee estimation strategies,

thus supporting common knowledge among fee market participants. At the moment,

the value of 1 nanoETH (10
−9

ETH) is recommended as such a default by the EIP itself

[5].

that 𝐹 is continuous and strictly increasing (i.e., non-atomic). We

will write 𝐹 to denote the survival function of 𝐹 , i.e., 𝐹 (𝑥) = 1−𝐹 (𝑥),
for any 𝑥 ∈ R. For the most part, we will assume that users are non-
strategic, which means that they bid their valuations as feecaps, i.e.,

𝑓𝑖 = 𝑣𝑖 and that they set a premium equal to the miner’s acceptance

threshold 𝜖 , i.e., 𝑝𝑖 = 𝜖 for each user 𝑖 ∈ N. In short, a non-strategic

user with valuation 𝑣𝑖 , is defined as a user who bids (𝑓 , 𝑝) = (𝑣𝑖 , 𝜖).

2.3 Non-Atomic Model
Based on the above assumptions, the dynamical system that is

determined by equation (2) is a discrete time, discrete space stochastic
process {𝑏𝑡 }𝑡 ≥0. The source of randomness is the term 𝑔𝑡 | 𝑏𝑡 , i.e.,
the number of transactions that get included in block 𝐵𝑡 given the

basefee 𝑏𝑡 . However, for the most part of the analysis, it will be

sufficient to consider a non-atomic (or fluid) approximation of the

above system. Accordingly, we will assume that there is a fixed

number of 𝜆𝑇 arrivals between each two consecutive blocks and

that the fraction of users who are willing to pay the basefee (plus

the miners’ premium) is equal to 𝜆𝑇𝐹 (𝑏𝑡 + 𝜖). Taking into account

that a block has a maximum size,𝑇 , the above lead to the following

discrete time, continuous space deterministic process

𝑏𝑡+1 = 𝑏𝑡 + 𝑏𝑡
𝑑

𝑇 /2

(
min {𝑇, 𝜆𝑇𝐹 (𝑏𝑡 + 𝜖)} −𝑇 /2

)
.

which after some straightforward simplifications leads to

𝑏𝑡+1 = 𝑏𝑡 + 𝑏𝑡𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1}. (4)

The analysis of the dynamical system {𝑏𝑡 }𝑡 ≥0 that is defined by

equation (4) will be the main subject of the theoretical part of

this paper. In the simulations, we again employ the discrete model

described above.

Remark 1. For practical purposes, the approximation of discrete ar-

rivals by a continuous process is justified by the fact that 𝑔𝑡 actually

denotes gas units, which offer a much larger granularity than exact

numbers of transactions. Moreover, the number of arrivals between

consecutive blocks can be considered fairly constant during station-

ary periods which are of interest here. If the demand shifts to a new

stationary level, then the basefee is also expected to shift to adjust

to this new level. From a theoretical perspective, the deterministic

dynamical system in equation (4) can be justified as an upper bound

of the sequence of conditional expectations E[𝑏𝑡+1 |𝑏𝑡 ] as explained
in Lemma 3.1 below.

3 ANALYSIS
Our main task in this section is to analyze the convergence and

stability properties of the dynamical system {𝑏𝑡 }𝑡 ≥0 of equation

(4).

3.1 Preliminaries
As mentioned in Remark 1, our first observation is that, the deter-

ministic dynamical system in equation (4) can be justified as an

upper bound of the sequence of conditional expectations E[𝑏𝑡+1 |𝑏𝑡 ].
In particular, the base fee of block 𝑡 + 1 depends only on the state

of block 𝑡 , which means that the stochastic process {𝑏𝑡 }, 𝑡 ≥ 0 has

3
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the Markov property.6 This allows us to derive a closed form upper

bound for the conditional expectation E[𝑏𝑡+1 | 𝑏1, 𝑏2, . . . , 𝑏𝑡 ] as
shown in Lemma 3.1.

Lemma 3.1. Suppose that the number𝑁𝑡 of transactions that arrive
to the transaction pool between consecutive blocks 𝐵𝑡 , 𝐵𝑡+1 follows
a Poisson process with rate 𝜆𝑇 , with 𝜆 > 1/2 for any 𝑡 ≥ 0. Further,
suppose that users valuations 𝑣𝑖 , 𝑖 ∈ N are independently drawn
from a common distribution 𝑣 ∼ 𝐹 for some continuous and strictly
increasing distribution function 𝐹 and that users are nonstrategic, i.e.,
that their bids satisfy (𝑓 , 𝑝) = (𝑣𝑖 , 𝜖). Then, it holds that the stochastic
process {𝑏𝑡 }𝑡 ≥0 of equation (2)

𝑏𝑡+1 = 𝑏𝑡

(
1 + 𝑑 · 𝑔𝑡 | 𝑏𝑡 −𝑇 /2

𝑇 /2

)
, for any 𝑡 ∈ N.

has the Markov property and

E[𝑏𝑡+1 | 𝑏𝑡 ] ≤ 𝑏𝑡 + 𝑏𝑡𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1}. (5)

Proof. The Markov property is immediate from the definition

of 𝑏𝑡+1 since 𝑏𝑡+1 is fully determined by 𝑏𝑡 and 𝑔𝑡 | 𝑏𝑡 . Thus,
E[𝑏𝑡+1 | 𝑏0, . . . , 𝑏𝑡 ] = E[𝑏𝑡+1 | 𝑏𝑡 ] for any 𝑡 ≥ 0, with

E[𝑏𝑡+1 | 𝑏𝑡 ] = E
[
𝑏𝑡

(
1 + 𝑑 · 𝑔𝑡 | 𝑏𝑡 −𝑇 /2

𝑇 /2

) ���𝑏𝑡 ]
= 𝑏𝑡

(
1 + 𝑑 · E[𝑔𝑡 | 𝑏𝑡 ] −𝑇 /2

𝑇 /2

)
.

To proceed with the calculation of the conditional expectations

E[𝑔𝑡 | 𝑏𝑡 ], we define the random variables

𝑋𝑖 =


1, if 𝑖’s valuation satisfies the inclusion requirement

in block 𝐵𝑡 ,

0, otherwise.

Recall from equation (3), that the minimum inclusion requirement

is that min {𝑓 − 𝑏𝑡 , 𝑝} ≥ 𝜖 . Since users bid (𝑓 , 𝑝) = (𝑣𝑖 , 𝜖) by the as-
sumption that they are nonstrategic, it holds that min {𝑓 − 𝑏𝑡 , 𝑝} =
min {𝑣𝑖 − 𝑏𝑡 , 𝜖}. Hence, the inclusion requirement is satisfied if and

only if 𝑣𝑖 − 𝑏𝑡 ≥ 𝜖 which implies that 𝑋𝑖 = 1{𝑣𝑖 ≥ 𝑏𝑡 + 𝜖}. Thus,

𝑃 (𝑋𝑖 = 1 | 𝑏𝑡 ) = 𝑃 (𝑣𝑖 > 𝑏𝑡+𝜖) = 𝐹 (𝑏𝑡+𝜖), for any 𝑖 = 1, 2, . . . , 𝑁 .

Thus, conditional on𝑏𝑡 , the𝑋𝑖 ’s are independent and identically dis-

tributed (iid) with distribution (denoted by) 𝑋 | 𝑏𝑡 ∼ Bernoulli(𝑝 =

𝐹 (𝑏𝑡 + 𝜖)), so that E[𝑋 | 𝑏𝑡 ] = 𝐹 (𝑏𝑡 + 𝜖). Since the block ca-

pacity is upper bounded by 𝑇 , the transactions 𝑔𝑡 | 𝑏𝑡 that will
get ultimately included in block 𝐵𝑡 satisfy the equality 𝑔𝑡 | 𝑏𝑡 =

min

{
𝑇,

∑𝑁𝑡

𝑖=1
𝑋𝑖

} ��� 𝑏𝑡 . Putting these together, we can now upper

bound E[𝑔𝑡 | 𝑏𝑡 ] as follows

E[𝑔𝑡 | 𝑏𝑡 ] = E
[

min

{
𝑇,

𝑁𝑡∑︁
𝑖=1

𝑋𝑖

} ��� 𝑏𝑡 ] ≤ min

{
𝑇,E

[ 𝑁𝑡∑︁
𝑖=1

𝑋𝑖

��� 𝑏𝑡 ]}
= min {𝑇,E[𝑁𝑡 ]E[𝑋 | 𝑏𝑡 ]} = min {𝑇, 𝜆𝑇𝐹 (𝑏𝑡 + 𝜖)},

(6)

where the inequality is due to the interchange of the minimum

with the expectation and the (second to last) equality due to Wald’s

6
Formally, a stochastic process 𝑋𝑡 , 𝑡 ≥ 0 is Markovian, with respect to a filtration

F𝑡 = 𝜎 (𝑋𝑠 | 𝑠 ≤ 𝑡 ) , if for any fixed time 𝑡 ≥ 0, the future of the process, i.e.,𝑋𝑡+1 , is

independent of F𝑡 given 𝑋𝑡 .

equation since the random variables 𝑋𝑖 , 𝑖 = 1, . . . , 𝑁𝑡 are indepen-

dent of 𝑁𝑡 . Plugging (6) in the expression for E[𝑏𝑡+1 | 𝑏𝑡 ] above,
yields

E[𝑏𝑡+1 | 𝑏𝑡 ] ≤ 𝑏𝑡 + 𝑏𝑡𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1},
which is the the inequality in equation (5) as claimed. □

Next, we show that the dynamical system {𝑏𝑡 }𝑡 ≥0 in (4) has a

unique fixed point which is directionally stable. Before proceeding
with the formal statement and its proof, we first define the relevant

terms that we will in the subsequent theoretical analysis.

Definition 3.2 (Discrete Time Dynamical System). A one-dimensi-

onal discrete time dynamical system, {𝑏𝑡 }𝑡 ∈N, is determined by an

update rule 𝑔 : R→ R, so that 𝑏𝑡+1 := 𝑔(𝑏𝑡 ). We will write

𝑔𝑡 (𝑏0) := 𝑔 ◦ 𝑔 ◦ · · · ◦ 𝑔︸          ︷︷          ︸
𝑡−times

(𝑥),

to denote the 𝑡-th iteration of the system, i.e., the 𝑡-times composi-

tion of 𝑔 with itself (when 𝑡 = 1, we will simply write 𝑔 instead of

𝑔1
). Accordingly, a sequence (𝑔𝑡 (𝑏0))𝑡 ∈N is a called a trajectory or

orbit of the dynamics with 𝑏0 as a starting point. A point 𝑏∗ is called
a fixed point of the dynamics if 𝑔(𝑏∗) = 𝑏∗. A common technique

to show that a dynamical system converges to a fixed point is to

construct a function Φ : R→ R such that Φ(𝑔(𝑏) < Φ(𝑏) for any
𝑏 ∈ R unless 𝑏 is a fixed point of𝑔. We call Φ a Lyapunov or potential
function for 𝑔.

Definition 3.3 (Directionally Stable Fixed Point). Let {𝑏𝑡 }𝑡 ≥0 be

a one-dimensional dynamical system determined by a function

𝑔 : R→ R and let 𝑏∗ be fixed point of 𝑔, i.e., 𝑔(𝑏∗) = 𝑏∗. Then, 𝑏∗

is called directionally stable for {𝑏𝑡 }𝑡 ≥0 if for every 𝑡 ≥ 0 such that

𝑏𝑡 ≠ 𝑏∗ it holds that (𝑔(𝑏𝑡 ) −𝑏𝑡 )/(𝑏𝑡 −𝑏∗) < 0 where 𝑔(𝑏𝑡 ) = 𝑏𝑡+1

for every 𝑡 ≥ 0.

In words, if a fixed point is directionally stable for a dynamical

system, then the dynamical system moves to the direction of that

point at every iteration. However, the next iterate may overshoot

𝑏∗: for instance, if 𝑏𝑡 < 𝑏∗ and 𝑏∗ is directionally stable, then the

definition of directionally stability only guarantees that 𝑏𝑡+1 > 𝑏𝑡
and there is no restriction on whether 𝑏𝑡+1 ≤ 𝑏∗ or 𝑏𝑡+1 > 𝑏∗.

To proceed, with the formal statement that 𝑏∗ is directionally
stable for the (non-atomic) base fee dynamics {𝑏𝑡 }𝑡 ≥0, let 𝐹

−1 (𝑝) :=

inf{𝑥 ∈ R : 𝐹 (𝑥) ≥ 𝑝} denote the inverse distribution function of

𝐹 . Since 𝐹 is continuous and strictly increasing by assumption, for

any 𝑝 ∈ [0, 1] there exists a unique 𝑥 ∈ R such that 𝐹−1 (𝑝) = 𝑥 .

Moreover, under these conditions, 𝐹−1
is also strictly increasing.

Using this notation, we can prove Lemma 3.4.

Lemma 3.4. Consider the deterministic dynamical system {𝑏𝑡 }𝑡 ≥0

with
𝑏𝑡+1 = 𝑏𝑡 + 𝑏𝑡𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1}.

Then, 𝑏𝑡 has a unique stationary point given by

𝑏∗ = 𝐹−1 (1 − 1/2𝜆) − 𝜖. (7)

Moreover, 𝑏∗ is directionally stable for any initial condition 𝑏0 > 0

and the dynamics {𝑏𝑡 }𝑡 ≥0 converge to a globally attracting 𝑑𝑏∗-
neighborhood of 𝑏∗, i.e., there exists a 𝑡 ∈ N, so that 𝑏𝑡 ∈ [(1 −
𝑑)𝑏∗, (1 + 𝑑)𝑏∗] for any 𝑡 > 𝑡 .
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Proof of Lemma 3.4. Let 𝑟𝑡 denote the rate of change of 𝑏𝑡 , i.e.,

𝑟𝑡 := 𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1}.

By definition, 𝑟𝑡 ∈ [−𝑑,𝑑]. The process {𝑏𝑡 }𝑡 ≥0 becomes stationary

if only if 𝑟𝑡 becomes equal to 0. Solving the equation 𝑟∗ = 0 for

𝑏∗ under the assumption that 𝐹 is continuous and increasing (and

hence invertible and with an increasing inverse, 𝐹−1
) yields the

unique solution

𝑏∗ = 𝐹−1 (1 − 1/2𝜆) − 𝜖,

which is the only equilibrium candidate for the deterministic dynam-

ical system {𝑏𝑡 }𝑡 ≥0. Note that at 𝑏
∗
, it holds that 1/2 = 𝜆𝐹 (𝑏∗ + 𝜖),

and hence

min {1, 2𝜆𝐹 (𝑏∗ + 𝜖) − 1} = 2𝜆𝐹 (𝑏∗ + 𝜖) − 1 = 0. (∗)

To see that the the point 𝑏∗ is directionally stable for {𝑏𝑡 }𝑡 ≥0, we

proceed with a case discrimination on the sign of 𝑏𝑡 , 𝑡 ≥ 0. Since

the dynamical system is one-dimensional, this follows from a sign

analysis of 𝑟𝑡 .

• 𝑏𝑡 < 𝑏∗. Since 𝐹 is strictly increasing, it holds that 𝐹 (𝑏𝑡 + 𝜖) <
𝐹 (𝑏∗ + 𝜖) for any 𝑏𝑡 < 𝑏∗. Hence,

𝑟𝑡 = 𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1} > 𝑑 min {1, 2𝜆𝐹 (𝑏∗ + 𝜖) − 1} (∗)
= 0,

by definition of 𝑏∗. Hence, 𝑟𝑡 > 0, whenever 𝑏𝑡 < 𝑏∗.
• 𝑏𝑡 > 𝑏∗. Similarly, whenever 𝑏𝑡 > 𝑏∗, it will be the case that

𝐹 (𝑏𝑡 + 𝜖) > 𝐹 (𝑏∗ + 𝜖). Hence,

𝑟𝑡 = 𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1} < 𝑑 min {1, 2𝜆𝐹 (𝑏∗ + 𝜖) − 1} (∗)
= 0,

where the first equality in the last line follows from the observa-

tion that 𝜆(1 − 𝐹 (𝑏∗ + 𝜖)) < 𝑇 by definition of 𝑏∗.

Thus, it remains to show that 𝑏𝑡 can only have bounded oscil-

lations in a 𝑑𝑏∗ neighborhood around 𝑏∗, i.e., that the interval

[(1−𝑑)𝑏∗, (1+𝑑)𝑏∗] is globally attracting for the dynamics {𝑏𝑡 }𝑡 ≥0.

Assume that for some 𝑡 > 0, 𝑏𝑡 > 𝑏∗ and 𝑏𝑡+1 < 𝑏∗ (if 𝑏𝑡+1 > 𝑏∗,
then by the definition of directional stability, 𝑏𝑡+1 will be closer to

𝑏∗ than 𝑏𝑡 and the claim follows). Then, it must be the case that,

𝑏𝑡+1 = 𝑏𝑡 (1 + 𝑟𝑡 ) > 𝑏𝑡 (1 − 𝑑) > 𝑏∗ (1 − 𝑑),

since 𝑟𝑡 > −𝑑 by definition. Similarly, if 𝑏𝑡 < 𝑏∗ and 𝑏𝑡+1 > 𝑏∗ for
some 𝑡 > 0, then it holds that

𝑏𝑡+1 = 𝑏𝑡 (1 + 𝑟𝑡 ) < 𝑏𝑡 (1 + 𝑑) < 𝑏∗ (1 + 𝑑),

since 𝑟𝑡 < 𝑑 by definition. Thus, if |𝑏𝑡 − 𝑏∗ | < 𝑑𝑏∗ for some 𝑡 >

0, it must be that |𝑏𝑡 − 𝑏∗ | < 𝑑𝑏∗ for any 𝑡 > 𝑡 . This implies

that there can only be bounded oscillations around 𝑏∗ within the

[(1 − 𝑑)𝑏∗, (1 + 𝑑)𝑏∗] intervals as claimed. □

The next natural step is to determine conditions under which

the base fee converges to this candidate equilibrium or conditions

under which it does not. It is important to understand that even if

the base fee remains in the bounded region specified in Lemma 3.4,

it may oscillate there indefinitely (jumping from above to below the

equilibrium value and vice versa) causing significant fluctuations

in the block load even for stationary demand. Such an instance is

given in Example 3.5.

Example 3.5. Let𝑇 = 1000, and assume a fixed number of 𝜆𝑇 = 3000

arriving transactions per block with equally spaced valuations in

[200, 230] (i.e., the valuations are not drawn from a uniform dis-

tribution but are assumed to be deterministic and linearly spaced

in this case). Then, starting from 𝑏0 = 100, the process {𝑏𝑡 }𝑡 ≥0

has the form that is shown in Figure 1. While the base fee con-

Figure 1: A case with stationary demand in which the base
fee, 𝑏𝑡 , oscillates perpetually around the equilibrium value
𝑏∗ (right panel). Despite the bounded oscillations in 𝑏𝑡 , the
block load bounces between its extremes (full to empty and
vise versa) (left panel).

verges to the bounded region [(1 − 𝑑)𝑏∗, (1 + 𝑑)𝑏∗] as predicted by

Lemma 3.4, the block load bounces between its extremes, i.e., from

full to empty (and vise versa). Intuitively, instabilities emerge as the

number of arriving transactions with similar valuations increases.

If valuations had significant differences, then the base fee would

reach a level where only the desired 𝑇 /2 would not be priced out.

However, if valuations of users are similar, then the base fee prices

out (approximately) all or (approximately) none of the users at the

same time. This leads to chaotic updates of the base fee (still within

the bounded region [(1 − 𝑑)𝑏∗, (1 + 𝑑)𝑏∗]) and as it turns out, to

extreme (and undesired) oscillations in the block occupancy.

Our goal in the subsequent analysis is to formalize the observa-

tion in Example 3.5 and determine parameter regions for 𝜆 and𝑤

such that the base fee is provably convergent, oscillating or chaotic,

leading to (approximately) stable block loads in the former case or

significant fluctuations in the other cases.

3.2 Convergence to Equilibrium
For lower step-sizes, we can prove convergence of the base fee

dynamics to 𝑏∗. Here, we provide a closed form expression for the

threshold under which convergence provably occurs. We remind
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that in the non-atomic model the base fee 𝑏𝑡 is determined by the

following dynamics

𝑏𝑡+1 = 𝑏𝑡

[
1 + 𝑑 min {1, 2𝜆𝐹 (𝑏𝑡 + 𝜖) − 1}

]
.

Since the miners’ premium, 𝜖 appears only in the argument of

the cumulative distribution function, 𝐹 , we will eliminate it from

the following computations without loss of generality (e.g., by

appropriately shifting the support of 𝐹 ). For simplicity, we assume

that 𝜆 = 1 so that min {1, 2𝜆𝐹 (𝑏𝑡 ) − 1} = 2𝐹 (𝑏𝑡 ) − 1 for all 𝑏𝑡 > 0.

Under these assumptions, 𝑏∗ simplifies to 𝑏∗ = 𝐹−1 (1/2), i.e., it
is the median of the distribution 𝐹 . Using the above, we can now

formulate the following convergence threshold for the step-size

(which holds for arbitrary distributions).

Theorem 3.6. Let 𝑏𝑡+1 = 𝑏𝑡 [1 + 𝑑 (2𝐹 (𝑏𝑡 ) − 1)], 𝑡 ≥ 0 denote
the non-atomic base fee dynamics when 𝜆 = 1. Then, for any initial
value 𝑏0 > 0, and any continuous and strictly increasing distribution
function, 𝐹 , with support on [𝐿,𝑈 ] with 0 < 𝐿 < 𝑈 , 𝑏𝑡 𝑡 ≥0

converges
to 𝑏∗ = 𝐹−1 (1/2), for any step-size 𝑑 ∈ (0, 𝑑𝐹 ], where

𝑑𝐹 = inf

𝑏≠𝑏∗

(𝑏∗/𝑏)2 − 1

1 − 2𝐹 (𝑏) .

Proof. We rewrite the base fee dynamics as

𝑏𝑡+1 = 𝑏𝑡 [1 + 𝑑 (1 − 2𝐹 (𝑏𝑡 )]

and define the function 𝑔 : R+ → R+ by 𝑔(𝑏) := 𝑏 (1 + 𝑑 − 2𝑑𝐹 (𝑏)),
for any 𝑏 > 0. We will prove that

(ln𝑔(𝑏) − ln𝑏∗)2 − (ln𝑏 − ln𝑏∗)2 < 0, for any 𝑏 ≠ 𝑏∗ .

Once this is established, the convergence result easily follows since

(ln𝑏 − ln𝑏∗)2
acts as a potential function for the dynamics. To

proceed, we rewrite the left hand side of the above inequality as

(ln𝑔(𝑏) − ln𝑏∗)2 − (ln𝑏 − ln𝑏∗)2

= (ln𝑔(𝑏) − ln𝑏) · (ln𝑔(𝑏) + ln𝑏 − 2 ln𝑏∗)

= ln

(
𝑔(𝑏)
𝑏

)
ln

(
𝑏𝑔(𝑏)
(𝑏∗)2

)
= ln [1 + 𝑑 − 2𝑑𝐹 (𝑏)] · ln

[
(𝑏/𝑏∗)2 · (1 + 𝑑 − 2𝑑𝐹 (𝑏))

]
.

Since 𝐹 (𝑏) is a continuous and increasing function by assumption,

there are two cases:

• 𝑏 < 𝑏∗: in this case, it holds that 𝐹 (𝑏) < 𝐹 (𝑏∗) = 1/2 which

implies that 1 +𝑑 − 2𝑑𝐹 (𝑏) > 1 +𝑑 − 2𝑑/2 = 1. Hence, ln[1 +𝑑 −
2𝑑𝐹 (𝑏)] > 0. Thus, to obtain the desired inequality, we need to

select 𝑑 > 0 so that the term in the argument of the second ln

on the right hand side of the above equation is less than 1, i.e.,

(𝑏/𝑏∗)2 (1 + 𝑑 − 2𝑑𝐹 (𝑏)) < 1. Solving for 𝑑 yields the inequality

𝑑 ≤ (𝑏∗/𝑏)2−1

1−2𝐹 (𝑏) . Since this inequality must hold for any 𝑏 < 𝑏∗,
we obtain the threshold

𝑑 ≤ inf

𝑏<𝑏∗

(𝑏∗/𝑏)2 − 1

1 − 2𝐹 (𝑏) .

• 𝑏 > 𝑏∗: in this case, it holds that 𝐹 (𝑏) > 𝐹 (𝑏∗) = 1/2, which

implies that ln[1 +𝑑 − 2𝑑𝐹 (𝑏)] < 0. Thus, by a similar argument

as above, we need to select𝑑 > 0 so that the term in the argument

of the second ln on the right hand side of the above equation is

larger than 1, i.e.,

(𝑏/𝑏∗)2 (1 + 𝑑 − 2𝑑𝐹 (𝑏)) > 1.

Solving for 𝑑 yields the same inequality as above (note that now

1 − 2𝐹 (𝑏) < 0).

Putting the two cases together, we have that the base fee dynamics

converge to 𝑏∗ whenever 0 < 𝑑 ≤ 𝑑𝐹 , with 𝑑𝐹 = inf𝑏<𝑏∗
(𝑏∗/𝑏)2−1

1−2𝐹 (𝑏)
as claimed. □

We illustrate the result of Theorem 3.6 with an example.

Example 3.7. Consider the uniform distribution in [0, 1] with 𝐹 (𝑏) =
𝑏 for 𝑏 ∈ [0, 1], 𝐹 (𝑏) = 0 for 𝑏 < 0 and 𝐹 (𝑏) = 1 for 𝑏 > 1.

Then, 𝑏∗ = 1/2 and 𝑑𝐹 is given by 𝑑𝐹 = inf𝑏≠1/2∈[0,1]
1/4𝑏2−1

1−2𝑏
. The

minimum is obtained for 𝑏 = 1 which yields the value 𝑑𝐹 = 3/4.

This means that in this case, the dynamics converge for any𝑑 < 3/4.

To see the effect of the concentration of valuations in𝑑𝐹 , consider

the parametric case with 𝐹 ∼ Uniform[𝐿,𝑈 ] with [𝐿,𝑈 ] = [1 −
𝑤/2, 1 +𝑤/2] for some 𝑤 > 0 so that 1 −𝑤/2 > 0. Then, 𝐹 (𝑏) =
(𝑏−(1−𝑤/2))/𝑤 for𝑏 ∈ [1−𝑤/2, 1+𝑤/2], 𝐹 (𝑏) = 0 for𝑏 < 1−𝑤/2

and 𝐹 (𝑏) = 1 for 𝑏 > 1 + 𝑤/2. In this case, 𝑏∗ = 1 and 𝑑𝐹 is the

solution of the optimization problem

𝑑𝐹 = inf

𝑑≠𝑏∗∈[𝐿,𝑈 ]
(1 + 𝑏)𝑤

2𝑏2
,

which is obtained from Theorem 3.6 after some trivial algebra.

This is decreasing in 𝑏 which implies that the minimum is always

attained at the upper bound of the support, 𝑏 = 1+𝑤/2, yielding the

solution 𝑑𝐹 =
𝑤 (4+𝑤)
(2+𝑤)2

. Thus, 𝑑𝐹 is increasing in 𝑤 which implies

that convergence is easier (harder) as valuations become less (more)

concentrated in a specific regime.

The last example suggests that for any𝑑 > 0, there exists a𝑤 > 0

(small enough) such that the base fee dynamics will not converge
to 𝑏∗ if the valuations are uniformly distributed on an interval with

range𝑤 . This raises the question of what happens in the base fee

dynamics in such cases. As we show next, for certain values of𝑤 ,

the dynamics not only fail to converge, but they become provably

chaotic.

3.3 Instability and Chaos
The previous convergence results critically depend on the provided

thresholds. If the step-size exceeds these bounds, then the base

fee adjustment rule may lead to chaotic updates. As mentioned

above, these bounds depend on the number of arrivals, 𝜆, and in

the range of valuations,𝑤 . If 𝜆 increases or𝑤 decreases, i.e., if the

system becomes more congested or if the valuations become more

concentrated around a specific value, then the thresholds go down

and a given step-size may not be enough to guarantee convergence.

In fact, as we will show, for any step-size, there exists a (reasonably

large) 𝜆 and a (reasonably small)𝑤 so that the dynamics become

chaotic.

3.3.1 Dynamical Systems and Li-Yorke Chaos. Formally, we will

show that the base fee updates become chaotic in the sense of

Li-Yorke [14]. If a system is Li-Yorke chaotic, then its trajectories

exhibit complex behavior: uncountably many pairs of trajectories
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get arbitrary close and move apart infinitely many times as the

system evolves. Furthermore, the system has periodic orbits of

all possible periods. This means that different trajectories become

indistinguishable and hence, the system cannot be efficiently sim-

ulated or cannot be predicted in practice. The notion of Li-Yorke

chaos is a fundamental notion of chaos in dynamical systems that is

connected to many other definitions of chaos (e.g., positive topologi-

cal entropy). For more discussion on these connections, particularly

in the case of game dynamics see [8]. Such chaotic behavior has

recently been observed in game theoretic settings under adaptive

agents using different online learning dynamics [3, 8, 9, 18]. To give

the formal definition of Li-Yorke chaos (cf. Definition 3.10), we will

first introduce some additional notation.

Definition 3.8 (Periodic Orbits and Points). A sequence 𝑏1, 𝑏2,

. . . , 𝑏𝑘 is called a periodic orbit of length 𝑘 if 𝑏𝑡+1 = 𝑔(𝑏𝑡 ) for 1 ≤
𝑖 ≤ 𝑘 − 1 and 𝑔(𝑏𝑘 ) = 𝑏1. Each point 𝑏1, 𝑏2, . . . , 𝑏𝑘 is called periodic
point of period 𝑘 .

Definition 3.9 (Li-Yorke pair [14]). Let 𝑋 = [𝐿,𝑈 ] be a compact

interval in R and let 𝑔 : 𝑋 → 𝑋 define a discrete time dynamical

system (𝑥𝑡 )𝑡 ∈N on 𝑋 , so that 𝑥𝑡 := 𝑔𝑡 (𝑥0) for any 𝑥0 ∈ 𝑋 . A pair

(𝑥,𝑦) ∈ 𝑋 with 𝑥 ≠ 𝑦 is called a Li-Yorke pair if

lim inf

𝑡→∞
|𝑔𝑡 (𝑥) − 𝑔𝑡 (𝑦) | = 0 < lim sup

𝑡→∞
|𝑔𝑡 (𝑥) − 𝑔𝑡 (𝑦) |.

If for any 𝑥,𝑦 ∈ 𝑆 with 𝑥 ≠ 𝑦, the pair of 𝑥,𝑦 is a Li-Yorke pair, then

𝑆 is called a scrambled set.

The most classic definition of chaos in the mathematics literature

defines chaos as the existence of periodic orbits of all possible

periods along with an uncountably large scrambled set.

Definition 3.10 (Li-Yorke chaos [14]). Let𝑋 = [𝐿,𝑈 ] be a compact

interval in R and let 𝑔 : 𝑋 → 𝑋 define a discrete time dynamical

system (𝑥𝑡 )𝑡 ∈N on 𝑋 , so that 𝑥𝑡 := 𝑔𝑡 (𝑥0) for any 𝑥0 ∈ 𝑋 .

The dynamical system (𝑥𝑡 )𝑡 ∈N is called Li-Yorke chaotic if it

holds that:

(1) For every 𝑘 = 1, 2, . . . there is a periodic point in 𝑋 with period

𝑘 .

(2) There is an uncountable set 𝑆 ⊆ 𝑋 (containing no periodic

points), which satisfies the following conditions:

• For every 𝑥 ≠ 𝑦 ∈ 𝑆 ,

lim sup

𝑡→∞
|𝑔𝑛 (𝑥) − 𝑔𝑛 (𝑦) | > 0 and lim inf

𝑡→∞
|𝑔𝑛 (𝑥) − 𝑔𝑛 (𝑦) | = 0.

• For every point 𝑥 ∈ 𝑆 and point 𝑦 ∈ 𝑋 ,

lim sup

𝑡→∞
|𝑔𝑛 (𝑥) − 𝑔𝑛 (𝑦) | > 0.

In particular 𝑆 is a scrambled set.

According to [14], a sufficient condition for a system to be Li-

Yorke chaotic is that it has a periodic orbits of period 3. This will

be our main tool to show that the base fee dynamics are Li-Yorke

chaotic and is stated next.

Theorem 3.11 (Period three implies chaos [14]). Let 𝑋 ⊂ R
be a compact interval and let 𝑔 : 𝑋 → 𝑋 be a continuous function.
Further assume that there exists a point 𝑥0 ∈ 𝑋 for which the points
𝑥1 := 𝑔(𝑥0), 𝑥2 := 𝑔(𝑥1) = 𝑔2 (𝑥0) and 𝑥3 := 𝑔(𝑥2) = 𝑔3 (𝑥0) satisfy

𝑥3 ≤ 𝑥0 < 𝑥1 < 𝑥2 (or 𝑥3 ≥ 𝑥0 > 𝑥1 > 𝑥2) .

Then, the system is Li-Yorke chaotic.

Notice that if there is a periodic point with period 3, then the

hypothesis is satisfied.

3.3.2 Li-Yorke Chaos in the Base Fee Updates. With the above

terminology and notation at hand, we now return to the base fee

dynamics. In the case of the non-atomic approximation (cf. equation

(4)), it holds that 𝑏𝑡+1 = 𝑔(𝑏𝑡 ) with the continuous map 𝑔 defined

by

𝑔(𝑏) = 𝑏 + 𝑏𝑑 min {1, 2𝜆𝐹 (𝑏 + 𝜖) − 1}. (8)

As we showed in Lemma 3.4, the dynamics will ultimately enter

the bounded interval 𝑋 := [(1−𝑑)𝑏∗, (1−𝑑)𝑏∗]. Moreover, it holds

that 𝑔(𝑏) = 𝑏 for 𝑏 ∈ 𝑋 if and only if 𝑏 = 𝑏∗, i.e., 𝑏∗ is the unique
fixed point of function 𝑔 in 𝑋 . Thus, according to Definition 3.10

and Theorem 3.11, it suffices to show that the continuous map

𝑔 : 𝑋 → 𝑋 has a periodic point of period 3, i.e., that there exists

a point 𝑏 ′ ∈ 𝑋 with 𝑏 ′ ≠ 𝑏∗, which is a fixed point of 𝑔3 (𝑏), i.e.,
𝑔3 (𝑏 ′) = 𝑏 ′, 𝑏 ′ ≠ 𝑏∗ ∈ 𝑋 . The two panels in Figure 2 illustrate the

two possible cases.

Figure 2: Orbits in the base fee dynamics 𝑏𝑡+1 = 𝑓 (𝑏𝑡 ). The
left panel shows an instance in which the base fee dynamics
do not have orbits of period 3 (the graph of 𝑔 (3) (𝑏) does not
intersect the diagonal 𝑦 = 𝑏, i.e., 𝑔 (3) (𝑏) does not have fixed
points other than the unique fixed point of 𝑔(𝑏)). By contrast,
the right panel shows an instance with points of period 3
(multiple intersections of 𝑔 (3) (𝑏) and 𝑦 = 𝑏). In this case,
the dynamics are Li-Yorke chaotic. In both cases, the step
size is equal to 𝑑 = 0.125 and the valuations are uniformly
distributed in [200, 220]. The difference is in the demand level
which is higher in the chaotic case (2𝑇 in the left panel versus
5𝑇 in the right panel).

In Theorem 3.12, we invoke Theorem 3.11 and show the more

general case, that for any 𝑑 , there exists a distribution of valuations

so that the system becomes chaotic.

Theorem 3.12. Let 𝑔(𝑏) = 𝑏 + 𝑏𝑑 min {1, 2𝜆𝐹 (𝑏 + 𝜖) − 1} denote
the non-atomic approximation of the update rule for the base fee
dynamics (𝑏𝑡 )𝑡 ∈N. Then, for any fixed step size 𝑑 > 0, there exists a
continuous distribution 𝐹 of valuations, and a point 𝑏0 ∈ R, so that

𝑔3 (𝑏0) ≤ 𝑏0 < 𝑔(𝑏0) < 𝑔2 (𝑏0), (PO)

In particular, for any step-size 𝑑 , there exists a distribution of valua-
tions 𝐹 , for which the base fee dynamics become Li-Yorke chaotic.

Proof. The proof is constructive and proceeds by creating a

specific instance of the uniform distribution for which condition
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(PO) is satisfied. Then, the claim that the dynamics are Li-Yorke

chaotic follows from Theorem 3.11. To create such an instance, let

𝐹 ∼ Uniform[𝜇 − 1/2, 𝜇 + 1/2] for some 𝜇 > 0. Also, let 𝜆 = 1 and

as above, assume without loss of generality that 𝜖 = 0 (e.g., by

properly rescaling the distribution 𝐹 ). Based on these assumptions,

it holds that 1 > 2𝐹 (𝑏) − 1 for any 𝑏 > 0 which implies that the

update rule, 𝑔, of the non-atomic model becomes

𝑔(𝑏) = 𝑏 (1 + 𝑑 − 2𝑑𝐹 (𝑏)) .

We will now show that we can construct a sequence of points

𝑏0, 𝑏1 = 𝑔(𝑏0), 𝑏2 = 𝑔2 (𝑏0) and 𝑏3 = 𝑔3 (𝑏0) with the following

properties

(i) 𝑏0 ≤ 𝜇 − 1/2,

(ii) 𝑏1 = 𝑔(𝑏0) = 𝜇 − 𝛿 , for some 𝛿 > 0 sufficiently small (to be

determined later),

(iii) 𝑏2 = 𝑔(𝑏1) ≥ 𝜇 + 1/2.

We start by selecting an arbitrary 𝑏0 > 0 that satisfies property

(i). Thus, it holds that 𝐹 (𝑏0) = 0 (since 𝑏0 < 𝜇 − 1/2 which is

the lower bound of the support of the distribution of valuations)

which implies that 𝑏1 = 𝑔(𝑏0) = 𝑏0 (1 + 𝑑). Combining this with

property (ii), yields the first necessary condition, 𝑏0 (1 + 𝑑) = 𝜇 − 𝛿 ,

or equivalently

𝑏0 =
𝜇 − 𝛿

1 + 𝑑 , for some 𝛿 ∈ (0, 𝜇), (★)

where the condition 𝛿 < 𝜇 ensures that𝑏0 > 0 as assumed. Plugging

this into property (i) yields the condition

𝜇 − 𝛿

1 + 𝑑 ≤ 𝜇 − 1/2 ⇒ 2𝑑𝜇 − 1 − 𝑑 + 𝛿 ≥ 0. (C1)

Next, we calculate 𝑏2 = 𝑔2 (𝑏0) = 𝑔(𝑏1). Since 𝑏1 = 𝜇−𝛿 = 𝑏0 (1+𝑑),
we can determine 𝑔(𝑏1) as follows

𝑔(𝑏1) = 𝑏0 (1 + 𝑑) (1 + 𝑑 − 2𝑑𝐹 (𝜇 − 𝛿))

= 𝑏0 (1 + 𝑑)
(
1 + 𝑑 − 2𝑑

𝜇 − 𝛿 − (𝜇 − 1/2)
𝜇 + 1/2 − (𝜇 − 1/2)

)
= 𝑏0 (1 + 𝑑) (1 + 𝑑 − 2𝑑 (1/2 − 𝛿))
= 𝑏0 (1 + 𝑑) (1 + 2𝑑𝛿) = (𝜇 − 𝛿) (1 + 2𝑑𝛿),

where the last equality follows from (★). Thus, 𝑏2 = 𝑔2 (𝑏0) =

(𝜇 − 𝛿) (1 + 2𝑑𝛿) > 𝑏1 = 𝑔(𝑏0). Further, if property (ii) holds, i.e., if

𝑏2 ≥ 𝜇 + 1/2, or equivalently if

(𝜇 − 𝛿) (1 + 2𝑑𝛿) ≥ 𝜇 + 1/2, (C2)

(which gives a second necessary condition), then it holds that

𝐹 (𝑏2) = 1. This allows us to calculate 𝑏3 = 𝑔3 (𝑏0) = 𝑔(𝑏2) as
follows

𝑔(𝑏2) = 𝑏2 (1 + 𝑑 − 2𝑑 · 1) = 𝑏2 (1 − 𝑑) = 𝑏0 (1 + 𝑑) (1 + 2𝑑𝛿) (1 − 𝑑) .

Thus, 𝑏3 = 𝑔(𝑏2) < 𝑏2 and it remains to show that 𝑏3 ≤ 𝑏0. This

yields the third necessary condition 𝑏0 (1 +𝑑) (1 + 2𝑑𝛿) (1 −𝑑) ≤ 𝑏0

or equivalently (assuming that 𝑑 < 1 as it is in practice)

𝛿 ≤ 𝑑

2(1 − 𝑑2)
. (C3)

In sum, given 𝑑 > 0, we need to select 𝜇 > 0 and 𝛿 ∈ (0, 𝜇) so that

conditions (C1), (C2) and (C3) are satisfied simultaneously (note

that we already used (★) in the formulation of (C1)). This gives the

system

2𝑑𝜇 − 1 − 𝑑 + 𝛿 ≥ 0, (C1)

𝑑𝛿𝜇 − 𝑑𝛿2 − 𝛿 − 1/2 ≥ 0, (C2)

𝑑

2(1 − 𝑑2)
≥ 𝛿, (C3)

Thus, if we select any 𝛿 > 0 that satisfies condition (C3), it is

immediate to see, that by selecting 𝜇 large enough, conditions (C1)

and (C2) are always satisfied (since 𝜇 appears only in one term with

positive scalars). Specifically, if we solve (C1) and (C2) for 𝜇, we

obtain the (always feasible) condition

𝜇 ≥ max

{
1 + 𝑑 − 𝛿

2𝑑
,
𝑑𝛿2 + 𝛿 + 1/2

𝛿𝑑

}
, (C4)

which together with the selected 𝛿 , yields an admissible solution

of the initial system. Note that the second term inside the max is

always larger than 𝛿 , since
𝑑𝛿2+𝛿+1/2

𝛿𝑑
= 𝛿 + 1

𝑑
+ 1

2𝛿𝑑
> 𝛿 which

implies that any 𝜇 that satisfies condition (C4) immediately satisfies

𝜇 > 𝛿 as required for 𝑏0 to be positive (and thus for 𝑏0 to be

less than 𝑏1). In sum, we have shown that if we select a point

𝑏0 ≤ 𝜇 − 𝛿 where 𝜇, 𝛿 satisfy conditions (C3) and (C4), then it holds

that 𝑔3 (𝑏0) ≤ 𝑏0 < 𝑔(𝑏0) < 𝑔2 (𝑏0), which concludes the proof. □

Note that the construction in the proof of Theorem 3.11 was

based in a favorable scenario for stability which assumed 𝜆 = 1. For

higher values of 𝜆, the construction still applies and in fact, chaos

obtains for a much wider range of parameters (see Section 3.4).

Moreover, the selection of the uniform distribution in the proof is

not binding and the proof idea applies for arbitrary distributions.

This is illustrated in the next example which concludes this section.

Example 3.13 (A Specific Instance with Period 3). Let 𝑏0 > 0 take

an arbitrary value and assume that the cumulative distribution

function, 𝐹 (𝑏) of the valuations is continuous and satisfies the

following conditions: 𝐹 (0.64𝑏0) = 6/32, 𝐹 (0.8𝑏0) = 11/18, 𝐹 (𝑏0) =
11/18 and 𝐹 (1) = 1. Assume that 𝜆 = 1 and that 𝐹 is rescaled

so that 𝜖 = 0 (as above). Then, for 𝑑 = 9/10, we have that 𝑏1 =

𝑔(𝑏0) = 𝑏0 (1 + (9/10) (2(1 − 7/18) − 1)) = 0.8𝑏0, 𝑏2 = 𝑔2 (𝑏0) =

0.8𝑏0 (1 + (9/10) (2(1 − 11/18) − 1) = 0.64𝑏0 and 𝑏3 = 𝑔3 (𝑏0) =

0.64𝑏0 (1 + (9/10) (2(1 − 6/32) − 1) = 𝑏0. We, thus, get an example

with period 3.

3.4 Bifurcation Diagrams
The previous paragraphs suggest that there are ranges of param-

eters for which the base fee dynamics converge and ranges of

parameters for which they become Li-Yorke chaotic. The system

is more prone to chaotic behavior as the step-size, demand (users

that submit transactions) or concentration of valuations increase.

In this paragraph, we visualize the long-term behavior of the base

fee dynamics and the transitions through the various regimes as

the critical input parameters of the system change. Again, for ex-

positional purposes, we restrict attention to uniform distribution

of valuations on the interval [𝐿,𝑈 ] = [210 −𝑤/2, 210 +𝑤/2].7 The
results are shown in the bifurcation diagrams in Figure 3.

7
Simulations with different distributions such as triangle distribution or normal pro-

duce qualitatively equivalent results which are not presented here.
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Figure 3: Bifurcation diagrams for the input parameters,𝑤 (range of valuations) and 𝑑 (step-size) of the non-atomic base fee
dynamics of equation (4). Left panel: route from order to chaos as the step-size increases. Right panel: route from chaos to
order as the range of valuations increases.

The horizontal axis of each diagram corresponds to the varying

parameter, 𝑤 and 𝑑 respectively, with all other parameters being

fixed.
8
The vertical axis shows the attractor of the base fee dy-

namics (blue dots) for 400 updates (after a burn-in period of 100

updates) and the [(1−𝑑)𝑏∗, 𝑏∗, (1+𝑑)𝑏∗] bounds. Interestingly, the
transition from the stable (convergent) to the chaotic regime does

not occur by a period doubling (as is typical in most game-theoretic

applications of chaos theory) [3, 8]. For practical purposes, the im-

portant observation is that these phase transitions occur abruptly

for small changes in the parameter values.

4 EXPERIMENTS
We describe here the main components and results from a simula-

tion environment created to replicate the Ethereum transaction fee

market.

4.1 Simulation environment
4.1.1 Chain dynamics. Blocks in Ethereum are produced by min-

ers in a random, iterative process. A block builds on a chain of

predecessors, such that the chain length always increases in time.

The consensus algorithm ensures all participants (miners and users)

agree on the current head of the chain. In the following simulations,

we adopt the parameter choices of EIP 1559, namely, a gas target

of 12,500,000, gas limit of 25,000,000 and update rate parameter

𝑑 = 0.125.

The simulations assume that a unique block is produced at all

chain heights and that all participants receive this block with no

latency. In particular, once a block is published, all users observe

the updated basefee instantly. We assume randomness in the block

8
The bifurcation diagram for parameter 𝜆 is similar and is not presented here.

arrival times. In Ethereum, block arrival times typically follow a

Poisson process of rate 𝜂 = 13 seconds under the assumption of no

latency.
9

4.1.2 User behavior. User values 𝑣 are sampled from a fixed dis-

tribution 𝐹 . We assume users all send transactions consuming the

same amount of gas 𝛾 , without loss of generality. The values are

expressed as benefit received per unit of gas, thus if the user’s

transaction is included, the user receives 𝛾𝑣 utility. The parameter

value 𝛾 is obtained by computing the average gas used in all blocks

from a sample period between block 10,900,000 (timestamp Sep-20-

2020 03:17:06 PM UTC) to block 10,942,000 (timestamp Sep-27-2020

02:40:14 AM UTC). We then take the median of the series of aver-

age gas used per block, rounded to the nearest multiple of 1,000,

to provide a sensible 𝛾 estimate. The procedure yields 𝛾 = 76, 000,

for a maximum number of transactions in the block equal to 328,

given the gas limit of 25,000,000. User values are chosen uniformly

at random in the interval from 10 to 100 Gwei.

Users typically transact on the Ethereum chain through wallets,
which provide fee estimation and generate transaction parame-

ters such as the gas limit and data payload (e.g., inputs and names

of function calls for smart contract interactions). In the current,

first-price auction-based fee market, wallets typically provide fee

estimation by computing statistics from historical transaction in-

clusion, e.g., the median fee paid by any transaction over the last

200 blocks. While wallet behaviors in 1559 are not currently known,

we use the following design:

• When the previous block was not close to full (less than 90% gas

used), the wallet sets the fee cap parameter 𝑓 to a fixed value

9
Average block time chart https://etherscan.io/chart/blocktime
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derived from the basefee (we use three times the current basefee)

and the premium 𝑝 to the commonly agreed 𝜖 miner marginal

cost. We guarantee that fee cap covers at least the premium by

setting a lower bound.

• When the previous block was close to full (above 90% gas used),

the wallet adds an increment to the average tip recorded in

the previous block, inducing competition between users while

basefee matches the new demand.

4.1.3 Demand process. For convenience, we introduce two time

indices: 𝑠, 𝑡 refer to chain heights (measured in blocks), while 𝑘

refers to simulation time (measured in seconds). As block inter-

arrival times are random, we first generate a demand process (𝐷𝑘 )𝑘
returning for all time indices 𝑘 an integer-valued demand volume.

𝐷𝑘 is interpreted as “users producing transactions between seconds

𝑘 − 1 and 𝑘”.

To generate (𝐷𝑘 )𝑘 , we sample Brownian motion (BM) paths with

initial condition 𝐷0, mean 0 and variance 𝜎2
. We obtain demand

paths that feature periods of increasing and decreasing volumes due

to the randomness of the BM, yet do not explicitly have a positive

or negative trend. In addition, we simulate random “jumps” where

a mass of users is generated at random intervals, decaying over the

next steps at a rate 𝛿 , to reproduce instances where an on-chain

event brings a sudden influx of new users (e.g., token sale). Formally,

our demand process satisfies at time 𝑘 :

𝐷𝑘 =𝑊𝑘 + 𝐽𝑘 ; 𝐽𝑘 = (1 − 𝛿) 𝐽𝑘−1
+

𝑀𝑘∑︁
𝑗=1

𝜁 𝑗 · 1 ⌊𝜅 𝑗 ⌋=𝑘 ; 𝐽0 = 0

where𝑊𝑘 is a discretized Brownian motion (in this case, a random

walk with normal increments of mean 0 and standard deviation

𝜎); 𝑀𝑘 is a Poisson process of rate 𝜆 𝑗 evaluated at time 𝑘 ; 𝜁 𝑗 is

an exponential random variable of mean 𝐵0, modelling a demand

jump; and ⌊𝜅 𝑗 ⌋ is the time index where the 𝑗-th jump occurred.

Figure 4 depicts the sample paths for one value of demand variance

and initial condition.

4.1.4 Transaction pool behavior. Miners run Ethereum nodes ex-

changing data (including transactions) with other nodes over a

peer-to-peer network. Nodes are either run by miners, users or

third parties, to relay this data in a decentralized fashion. A user

either directly sends their transactions from their own node or

indirectly from a third party node, who receives the transaction

from the user via some communication protocol.

While only miner nodes eventually produce blocks, all nodes

feature a transaction pool that holds pending transactions and

continuously receives or sends items to other nodes, as requested.

All nodes are free to decide in practice which transaction pool

policies to apply, including the choice of the maximum number of

pending transactions held in the transaction pool at any point in

time. Geth, Ethereum’s dominant node client as of February 2021,

holds by default a maximum of 4096 transactions in the pool.
10

In our simulations, we abstract this peer-to-peer network of

transaction pools with differing policies into one logical transaction

pool, which instantly receives all user transactions, applies the

same pool policy at all time steps and is used by all miners to form

10
See https://geth.ethereum.org/docs/interface/command-line-options for defaults,

https://www.ethernodes.org/ for client statistics.

their blocks. The possibility that various pool policies will affect

transaction transmission is not considered.

4.1.5 Miner behavior. Much like the logical transaction pool de-

scribed above, we also consider a single logical miner representing

all miners who produce blocks. [21] provides evidence for the in-

centive - compatibility of miner myopic strategies, who maximize

greedily the available fees at the time of their block production.

Thus, we do not consider the possibility of long-range attacks in

our simulations, where a cartel of miners colludes to lower the base-

fee to zero to enforce a monopolistic price of entry. Given the set

of pending transactions in the pool, miners order transactions by

received tip (in decreasing order) and include as many transactions

as possible, until the block limit is reached or there are no more

valid transactions to include.

4.1.6 Simulation steps. We provide below a description of a sin-

gle simulation step, articulating how the various components are

employed.

(1) The previous block 𝐵𝑡−1 produced at chain height 𝑡 − 1 is re-

ceived by all participants.

(2) An inter-arrival time 𝜂𝑡 is sampled from an exponential distri-

bution of mean 𝜂 = 13, such that the block at height 𝑡 is created

at time index 𝜃𝑡 =
∑𝑡
𝑠=1

𝜂𝑠 .

(3) Given the demand process (𝐷𝑘 )𝑘 , where 𝑘 is an index over

seconds, we obtain 𝑁𝑡 =
∑𝜃𝑡
𝑘=𝜃𝑡−1

𝐷𝑘 . 𝑁𝑡 is the number of users

entering the market between blocks 𝑡 − 1 and 𝑡 , included at the

earliest in block 𝐵𝑡 .

(4) The 𝑁𝑡 users observe the current chain state (e.g., the basefee

level) and decide whether or not to transact. User transactions

are formed via wallets which encode shared strategies.

(5) Transactions are received by miner transaction pools, which

hold a set of pending transactions from previous simulation

steps. All the while, transaction pools apply eviction policies

in order to manage their limited resources.

(6) The miner producing 𝐵𝑡 selects transactions from the pool to

maximize their fees. The set of selected transactions must be

smaller than the block limit.

(7) Repeat from step 1.

4.2 Simulation results
4.2.1 Independent and dependent variables. We focus our attention

on three independent variables:

• The demand path variance 𝜎2
: We choose 𝜎 ∈ {0.1, 0.5, 1.0}.

• Initial condition of the Brownian motion 𝐷0: Given the mean

block inter-arrival time 𝜂, we select 𝐷0 to reproduce conditions

of low, medium and high demand. With 𝐷0 set to
𝑇
𝛾𝜂 , we target

a user arrival rate that on average is exactly enough to fill the

block to its limit (i.e., to twice its target). Thus we select 𝐷0 ∈
{ 𝑇
𝛾𝜂 , 1.5

𝑇
𝛾𝜂 , 2

𝑇
𝛾𝜂 }.

• Transaction pool eviction tolerance 𝜏 : size of the eviction band,

i.e., evict all transactions with fee cap smaller than (1 − 𝜏) times

basefee. 𝜏 = 0 is the strictest policy (remove all transactions

with fee cap smaller than current basefee), 𝜏 = 1 is the most

permissive (keep everything, modulo the pool limit size). We

choose 𝜏 ∈ {0, 1/3, 2/3, 1}.
10
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Figure 4: Demand paths at standard deviation 𝜎 = 0.5, 𝐷0 = 2
𝑇
𝛾𝜂 .

We sample 20 Brownian motion samples (see Figure 4). Each

sample yields nine distinct paths, one for each value of standard

deviation 𝜎 and initial condition 𝐷0, i.e., 180 paths. For each path,

one simulation is run for each value of 𝜏 , yielding 720 sample runs.

Each run consists of 600 blocks, representing approximately half a

day of activity on Ethereum. The first 100 blocks of each run are

discarded from the analysis, as they represent initial conditions

where basefee has not yet matched the existing demand.

Our dependent variable measures the variance of recent realisa-

tions of the percentage of gas used by the block. In Section 3, chaotic

behavior obtained rapid variations of the gas used, from mostly

empty block to mostly full blocks. Experimentally, we measure a

moving standard deviation of the series of gas used, with window

size 4. The maximal standard deviation 𝑠∗ is achieved whenever the
four values alternate between 0 and 100. We call high variance time

steps where the moving standard deviation is at least 95% of 𝑠∗. The
percentage of high variance time steps among all simulation steps

is our dependent variable.

4.2.2 Higher variance, higher initial demand and more permissive
pool policies increase high variance periods. We reproduce in Fig-

ure 5 the percentage of high variance steps averaged over sample

runs for each single value of treatment variables. We observe con-

sistent increases in high variance steps as the demand variance

increases, the initial demand level increases or the pool eviction

policy is more permissive, as evidenced by the two samples pre-

sented in Figure 6.

The pool eviction has the sharpest contrast between levels of

the variable. While high variance steps almost never occur with

the strictest pool policy (never keeping a transaction with fee cap

inferior to the current basefee), even a mild increase of the tolerance

to 1/3 induces a level of high variance steps comparable to any

further increase of the tolerance.

4.2.3 Stricter pool policies trade-off user efficiency and miner rev-
enue. In the simulations, user values are randomly sampled from

the uniform distribution, with the randomness seeded by the index

of the Brownian motion (BM) sample, such that runs with identical

demand paths, demand variance and initial condition generate the

same users. This allows for comparison of two more dependent

variables, user efficiency and miner revenue, given the band width 𝜏

as independent variable and controlling for demand variance and

initial conditions.

User efficiency measures the total benefits received by all users

included in the chain. EIP 1559 is efficient whenever users with the

highest value are included on-chain.
11

Miner revenue consists of

the received tips, either at the marginal cost level 1 Gwei per gas

unit or higher whenever users are competitively bidding.

An experiment is represented by a choice of triple (BM index,

demand variance, initial condition), with the band width 𝜏 taken as

the independent variable. In all experiments, increasing the band

width decreases both the user efficiency as well as miner revenue.

11
In this work, we do not consider users with time preferences.
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eviction tolerance.
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Figure 6: Two sample runs, one per row, with line plots for basefee, number of included transactions and transaction pool
length. High variance periods are represented by red bars in the background. The first sample has 𝐷0 = 𝑇

𝛾𝜂 , 𝜎 = 0.1, 𝜏 = 0 and

features few high variance periods. The second sample has 𝐷0 = 2
𝑇
𝛾𝜂 , 𝜎 = 1, 𝜏 = 1 and features more high variance periods.

Additionally, the transaction pool is continuously full, as the pool eviction policy is most permissive.

This result is explained by the dynamics of the pool itself. By keep-

ing transactions that are not currently valid for inclusion, miners

have “inventory” to spend whenever demand is low and the basefee

has decreased enough to make the transactions valid. This inven-

tory however represents a danger to the stability of the basefee,

as a bottleneck of transactions may accumulate in the pool, all

becoming valid at the same instant and provoking basefee spikes

and instability.

5 CONCLUSIONS
Ethereum’s improvement proposal (EIP) 1559 is aiming to trans-

form the transaction fee market of the Ethereum blockchain via a

dynamic pricing mechanism. The core element of the mechanism is

a fixed-per-block network fee (termed basefee) that is burned and

dynamically expands/contracts block sizes to deal with transient

congestion [4]. Our goal in this paper was to stress-test the basefee

both theoretically and experimentally and understand its effects on

regulating the transaction fees and block occupancies.

A concrete outcome of both our theoretical and experimental

analysis is the importance of the basefee adjustment parameter in

the performance of the mechanism. Our findings provide insights

about the conditions under which the basefee self-stabilizes but

also characterize extreme operational scenarios under which its

dynamics become chaotic. In particular, we showed that EIP1559

has promising properties (convergence guarantees under various

conditions) to convey stability to the fee market and identified

sources of concern that may destabilize the system into regimes of

chaotic behavior.

Testing these theoretical and experimental results against real

data from the post EIP-1559 Ethereum mainnet is an immediate

direction for future work. Of interest are also more extensive sim-

ulations on EIP-1559 or alternative mechanisms and theoretical

analyses that will additionally incorporate in their modelling as-

sumptions transaction processing delays [13] and different eviction

policies (i.e., transactions that remain in the pool until they are

processed in later blocks).

Finally, from a methodological perspective, our work can be

of interest to general blockchain and market design audiences. In

particular, our results (on chaos and convergence of the base fee

dynamics) can be compared to analogous findings regarding price

adjustments in distributed production economies (see e.g., [7] and

references therein for this line of literature). More importantly,

the systematic framework with elements from mechanism design,

dynamical systems and chaos theory that we develop in the present

work to analyze EIP-1559 can be directly applied in the study of

similar transaction fee mechanisms in general blockchain-based

economies.
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