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Abstract. We propose an adaptive variance-reduction method, called AdaSpider, for
minimization of L-smooth, non-convex functions with a finite-sum structure. In essence,

AdaSpider combines an AdaGrad-inspired [16, 40], but a fairly distinct, adaptive step-size
schedule with the recursive stochastic path integrated estimator proposed in Fang et al. [19].
To our knowledge, AdaSpider is the first parameter-free non-convex variance-reduction
method in the sense that it does not require the knowledge of problem-dependent parameters,
such as smoothness constant L, target accuracy ε or any bound on gradient norms. In doing

so, we are able to compute an ε-stationary point with Õ
(
n+

√
n/ε2

)
oracle-calls, which

matches the respective lower bound up to logarithmic factors.

1. Introduction

This paper studies smooth, non-convex minimization problems with the following finite-sum
structure:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (Prob)

where each component function fi : Rd → R is L-smooth and is possibly non-convex, and we
further assume f is also non-convex. We seek to find an ε-approximate first-order stationary
point x̂ of f , such that ‖∇f(x̂)‖ ≤ ε, where ε > 0 is the accuracy of the desired solution.

This structure captures many interesting learning problems from empirical risk minimization
to training of neural networks. First-order methods have been the standard choice for solving
(Prob), due to their efficiency and favorable practical behavior. In that regard, while gradient
descent (Gd) requires O(n/ε2) gradient computations, stochastic gradient descent (Sgd) requires
O(1/ε4) overall gradient computations. In many interesting machine learning applications n
tends to be large, e.g., training a neural network for image classification with very big image
datasets [14], hence Sgd typically leads to better practical performance.

To leverage the best of both regimes, Gd and Sgd, the so-called variance reduction (VR)
framework combines the faster convergence rate of Gd with the low per-iteration complexity of
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Sgd. Originally proposed for solving strongly-convex problems [13, 24, 42], variance reduction
frameworks essentially generate low-variance gradient estimates by maintaining a balance
between periodic full gradient computations and stochastic (mini-batch) gradients. VR methods
and their theoretical behavior for convex problems have been well-studied under various problem
setups and assumptions, including µ-strongly convex functions with O(n + (L/µ) log(1/ε))

complexity [13, 24, 42]; µ-strongly convex functions with accelerated O(n +
√
L/µ log(1/ε))

complexity [2, 29, 47] and smooth, convex functions with Õ(n+ 1/ε) complexity [15, 47, 58].
For non-convex minimization, earlier attempts extended the existing VR frameworks, achieving
the first rates of order O(n+ n2/3/ε2) with sub-optimal dependence on n [1, 35, 45, 55]. The
most recent non-convex VR methods [18, 36, 37, 44, 51] close this gap and achieve the optimal
gradient oracle complexity of O(n+

√
n/ε2) [18].

Adaptivity and First-order Optimization

The selection of the step-size is of great importance in both the theoretical and practical
performance of first-order methods, including the aforementioned VR methods. In the case
of L-smooth minimization, first-order methods need the knowledge of L so as to adequately
select their step-size [41], otherwise the method is not guaranteed to be convergent and might
even diverge [15, 38]. To elucidate, classical analysis relies on the (expected) descent property
and guarantees that the algorithm monotonically makes progress every iteration. To enforce
this property everywhere on the optimization landscape, one needs to pick the step-size as
γt ≤ O(1/L), which restricts the step length of the algorithm with respect to the worst-case
constant L. On the other hand, estimating the smoothness constant for an objective of interest,
such as neural networks, is a very hard task [21]. At the same time, using crude bounds on the
smoothness constant leads to very small step-sizes and consequently to poorer convergence. In
practice the step-size is tuned through an empirical search over a range of hand-picked values
that adds a considerable computational overhead and burden. In order to alleviate the burden
of tuning process, we need step-sizes that adjust in accordance with the optimization path.

A popular line of research studies first-order methods that adaptively select their step-size by
taking advantage of the previously produced point. In many settings of interest, these adaptive
methods are able to guarantee optimal convergence rates without requiring the knowledge
of the smoothness constant L while they often admit superior empirical performance due to
their ability to decrease the step-size according to the local geometry of the objective function.
Inspired by AdaGrad introduced in the concurrent seminal works of [16] [39], a recent line of
works [17, 25, 26, 31] propose adaptive gradient methods that given access to noiseless gradient-
estimates achieve accelerated rates in the case of L-smooth convex minimization without requiring
the knowledge of smoothness constant L. Similarly, Ene et al. [17] and Antonakopoulos et al. [5]
propose adaptive methods with optimal convergence rates for monotone variational inequalities
while Antonakopoulos et al. [6] provide adaptive methods for monotone variational inequalities
assuming access to relative noise gradient-estimates. Hsieh et al. [23] and Vu et al. [50] study
the convergence properties of adaptive first-order methods for routing and generic games.

Adaptive non-convex methods for General Noise Related to our work is a recent line
of papers studying adaptive first-order methods under the general noise model. In this setting,
a method is assumed to access unbiased stochastic estimate of the gradient with bounded
variance. This is a more general setting than finite-sum optimization that comes with worse
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lower bounds, i.e. Ω(1/ε4)1 gradient-estimates are needed so as to compute an ε-stationary point.
A recent line of works study adaptive first-order methods that are able to achieve near-optimal
oracle-complexity while being oblivious to the smoothness constant L and the variance of
the estimator [20, 27, 34, 52]. For example Ward et al. [52] established that the adaptive

method called AdaGrad-Norm is able to achieve Õ(1/ε4) gradient-complexity in the general
noise model. In their recent work, Faw et al. [20] significantly extended the results of Ward
et al. [52] by showing that AdaGrad-Norm achieves the same rates even in case the gradient
admits unbounded norm (a restrictive assumption in [52]) while their result persists even if the
variance increases with the gradient norm. In the slightly more restrictive setting at which the
objective function f(x) := Eξ∼Dg(x, ξ) where each estimate g(x, ξ) is L-smooth with respect
to x for all ξ, Levy et al. [32] proposed an adaptive method called STORM++ that achieves
O(1/ε3) gradient-complexity and that removes the requirement of the knowledge on problem
parameters (e.g., smoothness constant, absolute bounds on gradient norms) that the original
STORM method proposed by Cutkosky et al. [12] requires. The latter gradient-complexity
matches the Ω(1/ε3) lower bound of Arjevani et al. [7].

Adaptivity and Finite-Sum minimization

In parallel with what we discussed earlier, existing variance-reduction methods (VR) crucially
need to know the smoothness constant L to select their step-size appropriately to guarantee
their convergence. To this end, the following natural question arises

Can we design adaptive VR methods that achieve the optimal gradient computation
complexity?

Li et al. [33] and Tan et al. [49] were the first to propose adaptive variance-reduction methods
by using the Barzilai-Borwein step-size [8]. Despite their promising empirical performance,
these methods do not admit formal convergence guarantees. When the objective function f in
(Prob) is convex, [15] recently proposed an adaptive VR method requiring O(n+ 1/ε) gradient
computation while, shortly after, [38] proposed an accelerated adaptive VR method requiring
O(n+

√
n/
√
ε) gradient computations.

To the best of our knowledge, there is no adaptive VR method in the case where f is
non-convex. We remark that f being non-convex captures the most interesting settings such
as minimizing the empirical loss of deep neural network where each fi stands for the loss with
respect to i-th data point and thus is a non-convex function in the parameters of the neural
architecture. Through this particular example, we could motivate adaptive VR methods in two
fronts: first, even estimating the smoothness constant L of a deep neural network is prohibitive
[21], and at the same time, the parameter n in (Prob) equals the number of data samples, which
can be very large in practice and is prohibitive for the use of deterministic methods.

Contribution and Techniques. In this work we present an adaptive VR method, called AdaSpi-
der, that converges to an ε-stationary point for (Prob) by using Õ(n +

√
nL2/ε2) gradient

computations. Our gradient complexity bound matches the existing lower bounds up to loga-
rithmic factors [19].

1We remark that in the case of finite-sum minimization there exist variance reduction methods with O(n+√
n/ε2) gradient complexity [19, 51].
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Table 1. In the following table we present the gradient computation complexity
of the existing non-adaptive and adaptive variance reduction methods for both
convex and non-convex finite-sum minimization. Since for there are multiple
non-adaptive VR methods, we present the earliest-proposed method matching
up to logarithmic factors the respective lower bounds.

f(x) Non-Adaptive VR Adaptive VR Complexity Lower Bound

convex Õ
(
n+

√
n
ε

)
Õ
(
n+

√
n
ε

)
Ω(n+

√
n
ε )

(ε-opt. solution) [28] [38] [53]

convex Õ
(
n+ 1

ε

)
Õ
(
n+ 1

ε

)
Ω(n+

√
n
ε )

(ε-opt. solution) [57] [15] [53]

non-convex O
(
n+

√
n
ε2

)
Õ
(
n+

√
n
ε2

)
Ω
(
n+

√
n
ε2

)
(ε-stat. point) [19] This work [19]

AdaSpider combines an adaptive step-size schedule in the lines proposed by AdaGrad [16]
with the variance-reduction mechanism based on the stochastic path integrated differential
estimator of the Spider algorithm [19]. More precisely, AdaSpider selects the step-size by
aggregating the norm of its recursive estimator, while following a single-loop structure as in
Fang et al. [19].

Our contributions and techniques can be summarized as follows:

• To our knowledge, AdaSpider is the first parameter-free method in the sense that it is
both accuracy-independent and is oblivious to the knowledge of any problem parameters
including L. Moreover, ε-independence enables us to provide any-iterate guarantees.
While Spider needs both ε and L to set its step-size as min( ε

L
√
n‖∇t‖,

, 1
2
√
nL

) to achieve

optimal gradient complexity [19], all other existing non-convex methods must know at
least the value of L in order to guarantee convergence [4, 51].

• We introduce a novel step-size schedule γt := n−1/4
(√

n+
∑t
s=0‖∇s‖2

)−1/2

where

∇s is the recursive variance-reduced estimator at round s. By identifying a unique
additive/multiplicative form for integrating n, we manage to achieve optimal dependence
on the number of components. We note that Adaspider can be viewed as Spider with
the step-size of AdaGrad-Norm [20, 43, 48, 52] were the parameters are respectively
selected as η := n1/4 and b20 :=

√
n [20].

• We show how to combine the above adaptive step-size schedule with the recursive Spider

estimator in order to ensure that the average variance 1
T

∑T−1
t=0 E [‖∇t −∇f(xt)‖] decays

at a rate Õ
(
n1/4/

√
T
)

. This might be of independent interest for other variance

reduction techniques.

We follow a novel technical path that uses the adaptivity of the step-size to bound the overall
variance of the process. This fact differentiates our approach from the previous adaptive and
non adaptive VR approaches (see Section 4 for further details) and provides us a surprisingly
concise analysis.

Remark 1. Our convergence results do not require bounded gradients that is typically a restrictive
assumption that the analysis of the adaptive methods for stochastic optimization require. We
overcome this obstacle by using the fact ‖xt − xt−1‖ ≤ 1 (due to the step-size selection) and
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thus ‖∇f(xt)−∇f(xt−1)‖ ≤ L‖xt − xt−1‖ ≤ L. The latter leads to the following upper bound
on the gradient norm, ‖∇f(xt)‖ ≤ LT + ‖∇f(x0)‖ that however leads to only a logarithmic
overhead in the final bound (see Lemma 2). A similar idea is used by Faw et al. [20] (Lemma 2)
in order to remove the bounded gradient assumption on the convergence rates of AdaGrad-Norm
under general noise.

2. Setup and Preliminaries

During the whole of this manuscript, we consider that the non-convex objective function
f : Rd 7→ R possesses a finite-sum structure

f(x) =
1

n

n∑
i=1

fi(x)

where each component function fi is L-smooth (or alternatively has L-Lipschitz gradient) and
(possibly) non-convex. To quantify the performance of our algorithm within the context of
non-convex minimization, we want to find an ε-first order stationary point x̂ ∈ Rd such that

‖∇f(x̂)‖ ≤ ε.

For notational simplicity we define ‖·‖ as the Euclidean norm. Then, we say that a continuously
differentiable function f is L-smooth if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (2.1)

which admits the following equivalent form,

f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖2 for all x, y ∈ Rd. (2.2)

Observe that smoothness of each component immediately suggests that objective f is L-smooth
itself. Since we are studying randomized algorithms for finite-sum minimization problems, we
do not consider any variance bounds on the gradients of components. We only assume that we
have access to an oracle which returns the gradient of individual components when queried.

3. Adaptive SPIDER algorithm and convergence results

In this section, we present our adaptive variance reduction method, called AdaSpider
(Algorithm 1) which exploits the variance reduction properties of the stochastic path integrated
differential estimator proposed in [19] while combining it with an AdaGrad-type step-size
construction [16]. Unlike the original Spider method [19], our algorithm admits anytime
guarantees, i.e., we don’t need to specify the accuracy ε a priori. Additionally, our algorithm
does not need to know the smoothness parameter L and guarantees convergence without any
tuning procedure.
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Algorithm 1 Adaptive SPIDER (AdaSpider)

Input: x0 ∈ Rd, β0 > 0, G0 > 0

1: G← 0
2: for t = 0, ..., T − 1 do
3: if t mod n = 0 then

4: ∇t ← ∇f(xt)
5: else
6: pick it ∈ {1, . . . , n} uniformly at random

7: ∇t ← ∇fit(xt)−∇fit(xt−1) +∇t−1

8: end if

9: γt ← 1/

(
n1/4β0

√
n1/2G2

0 +
∑t
s=0‖∇s‖2

)
10: xt+1 ← xt − γt · ∇t
11: end for

12: return uniformly at random {x0, . . . , xT−1}.

Remark 2. In Algorithm 1 the units of G0 are the same with the units of ∇f(xt) i.e. f/x while
the units of β0 are x−1. The latter is important so that the step-size γt takes the right units i.e.
x2/f .

As Algorithm 1 indicates, AdaSpider performs a full-gradient computation every n iterations
while in the rest iterations updates the variance-reduced gradient estimator in a recursive manner,
∇t ← ∇fit(xt)−∇fit(xt−1)+∇t−1. The adaptive nature of AdaSpider comes from the selection
of the step-size at Step 9 that only depends on the norms of estimates produced by the algorithm
in the previous steps.

Before presenting the formal convergence guarantees of AdaSpider (stated in Theorem 1),
we present the cornerstone idea behind its design and motivate the analysis for controlling the
overall variance of the process through the adaptivity of the step-size. This conceptual novelty
differentiates our work form the previous adaptive VR methods [15, 38] at which the adaptivity
of the step-size is only used for adapting to the smoothness constant L, and their constructions
come with additional challenges in bounding the variance. As a result, the following challenge is
the first to be tackled by the design of a VR method.

Challenge 1. Does the average variance of the estimator, 1
T

∑T−1
t=0 E [‖∇t −∇f(xt)‖], dimin-

ishes at a sufficiently fast rate?

Up next we explain why combining the variance-reduction estimator of Step 7 with the adaptive
step-size of Step 9 provides a surprisingly concise answer to Challenge 1. We remark that
Spider is able to control the variance at any iterations by choosing γt := min( ε

L
√
n‖∇t‖,

, 1
2
√
nL

)

as step-size. The latter enforces the method to make tiny steps, ‖xt − xt−1‖ ≤ ε/L
√
n which

results in ε-bounded variance at any iteration. The latter proposed SpiderBoost [51] provides
the same gradient-complexity bounds with Spider but through the accuracy-independent step-
size γ = 1/L. SpiderBoost handles Challenge 1 by using a dense gradient-computations
schedule2 combined with amortization arguments based on the descent inequality (this is why the
knowledge of L is necessary in its analysis). We remark that AdaSpider, despite being oblivious

2AdaSpider computes a full-gradient every
√
n steps and at the intermediate steps uses batches of size

√
n.
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to L and accuracy ε, admits a significantly simpler analysis by exploiting the adaptability of its
step-size.

In the rest of the section we present our approach to Challenge 1 and we conclude the section
with Theorem 1 stating the formal convergence guarantees of AdaSpider.

Handling the variance with adaptive step-size We start with the following variance
aggregation lemma that is folklore in (VR) literature (e.g. [56]).

Lemma 1. Define the gradient estimator at point x as ∇x := ∇fi(x)−∇fi(y) +∇y where i is
sampled uniformly at random from {1, . . . , n}. Then,

E
[
‖∇x −∇f(x)‖2

]
≤ L2‖x− y‖2 + E

[
‖∇y −∇f(y)‖2

]
Now, let us apply Lemma 1 on Spider estimator, ∇t := ∇fit(xt) −∇fit−1

(xt) +∇t−1 to
measure its variance at step xt.

E
[
‖∇t −∇f(xt)‖2

]
≤ L2E

[
‖xt − xt−1‖2

]
+ E

[
‖∇t−1 −∇f(xt−1)‖2

]
≤ L2E

[
γ2
t−1‖∇t−1‖2

]
+ E

[
‖∇t−1 −∇f(xt−1)‖2

]
≤ L2E

[
γ2
t−1‖∇t−1‖2

]
+ . . .+ E

[
‖∇t−(t mod n) −∇f(xt−(t mod n)‖2

]
=

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ‖∇τ‖2

]

where the last equality follows by the fact E
[
‖∇t−(t mod n) −∇f(xt−(t mod n)‖2

]
= 0 since

Algorithm 1 performs a full-gradient computations for every t with t mod n = 0 (Step 3 of
Algorithm 1). By telescoping the summation we get,

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤
T−1∑
t=0

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ‖∇τ‖2

]
≤ L2n ·

T−1∑
t=0

E
[
γ2
t · ‖∇t‖2

]

where the n factor on the right-hand side is due to the fact that each term E
[
γ2
t ‖∇t‖2

]
appears at most n times in the total summation. To this end, using the structure of the stochastic
path integrated differential estimator we have been able to bound the overall variance of the
process as follows,

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ L2n ·

T−1∑
t=0

E
[
γ2
t · ‖∇t‖2

]
However it is not clear at all why the above bound is helpful. At this point the adaptive selection
of the step-size (Step 9 in Algorithm 1) comes into play by providing the following surprisingly
simple answer,

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ L2n E

[
T−1∑
t=0

γ2
t · ‖∇t‖2

]

=
L2
√
n

β2
0

E

[
T−1∑
t=0

‖∇t‖2/G2
0√

n+
∑t
s=0‖∇s‖2/G2

0

]
≤ L2

√
n

β2
0

log

(
1 + E

[
T−1∑
t=0

‖∇t‖2/G2
0

])
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where the last inequality comes from Lemma 7. To finalize the bound, we require the following
expression that follows by the fact that γt ≤ 1/‖∇t‖ and thus ‖xt − xt−1‖ ≤ 1.

Lemma 2. Let x0, x1, . . . , xT the points produced by Algorithm 1. Then,

T−1∑
t=0

‖∇t‖2 ≤ O
(
n2T 3 ·

(
L2

β2
0

+ ‖∇f(x0)‖2
))

In simple terms, Lemma 2 helps us avoid the bounded gradient norm assumption that is
common among adaptive non-convex methods. As a result, AdaSpider admits the following
cumulative variance bound,

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ O

(
L2
√
n

β2
0

log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
. (3.1)

Remark 3. To this end one might notice that using a more aggressive n dependence on γt leads
to smaller variance of the estimator which is obviously favorable. However more aggressive
dependence on n leads to smaller step-sizes and thus to sub-optimal overall gradient-computation
complexity. In Section 4, we explain why the optimal way to inject the n dependence into
the step-size is through the simultaneous multiplicative/additive way described in Step 9 of
AdaSpider that may seem unintuitive on the first sight.

We will conclude this discussion with a complementary remark on the interplay between
our adaptive step-size and the convergence rate. As we demonstrated in Eq. (3.1), using a
data-adaptive step-size leads to a decreasing variance bound in an amortized sense as opposed
to any iterate variance bound of Spider. The trade-off in our favor is the parameter-free
step-size that is independent of ε and L. For a fair exposition of our results, notice that the
aforementioned advantages of an adaptive step-size comes at an additional log(T ) term in our
final bound due to Eq. (3.1). This has a negligible effect on the convergence as even in the large
iteration regime when T is in the order billions, it amounts to a small constant factor.

We conclude the section with Theorem 1 that formally establishes the convergence rate of
AdaSpider. The proof of Theorem 1 is deferred for the next section.

Theorem 1. Let x0, x1, . . . , xT−1 be the sequence of points produced by Algorithm 1 in case
f(·) is L-smooth. Let us also define ∆0 := f(x0)− f∗. Then,

1

T

T−1∑
t=0

E [‖∇f(xt)‖] ≤ O
(
n1/4 · Θ√

T
· log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
where Θ = ∆0 · β0 +G0 + L/β0 + L2/(β2

0G0). Overall, Algorithm 1 with β0 := 1 and G0 := 1

needs at most Õ
(
n+
√
n · ∆2

0+L4

ε2

)
oracle calls to reach an ε-stationary point.

4. Sketch of Proof of Theorem 1

In this section we present the key steps for proving Theorem 1. We first use the triangle
inequality to derive,

T−1∑
t=0

E [‖∇f(xt)‖] ≤
T−1∑
t=0

E [‖∇t −∇f(xt)‖] +

T−1∑
t=0

E [‖∇t‖]
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We have previously discussed how to bound the first term in Section 3. More precisely, by the
Jensen’s inequality and the arguments presented in Section 3, we obtain the following variance
bound.

Lemma 3. Let x0, x1 . . . , xT the sequence of points produced by Algorithm 1. Then,

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ O

(
Ln1/4

β0

√
log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
.

We continue with presenting how to treat the term
∑T−1
t=0 E [‖∇t‖]. By the smoothness of

the function and through a telescopic summation one can easily establish the following bound,

E

[
T−1∑
t=0

γt · ‖∇t‖2
]
≤ 2(f(x0)− f∗) + L · E

[
T−1∑
t=0

γ2
t · ‖∇t‖2

]
+ E

[
T−1∑
t=0

γt · ‖∇f(xt)−∇t‖2
]

As we explained in Section 3, the term E
[∑T−1

t=0 γ2
t · ‖∇t‖2

]
can be upper bounded by the

adaptability of the step-size γt. At the same time, using the adaptability of γt we are able

to establish that
∑T−1
t=0 E [‖∇t‖] is at most n1/4

√
T · E

[∑T−1
t=0 γt · ‖∇t‖2

]
. All the above are

formally stated and established in Lemma 4 the proof of which is deferred to the appendix.

Lemma 4. Let x0, x1, . . . , xT−1 the sequence of points produced by Algorithm 1 and ∆0 :=
f(x0)− f∗. Then,

E

[
T−1∑
t=0

‖∇t‖

]
≤ Õ

(
∆0 · β0 +G0 +

L

β0
+ E

[
T−1∑
t=0

γt‖∇f(xt)−∇t‖2
])

n1/4
√
T .

Due to the use of the adaptive step-size γt, the estimator’s error and the step-size itself are de-

pendent random variables, meaning that the weighted variance term E
[∑T−1

t=0 γt‖∇f(xt)−∇t‖2
]

cannot be handled by Lemma 1. To overcome the latter, we use the monotonic behavior of the
step-size γt to establish the following refinement of Lemma 1.

Lemma 5. Let x0, x1, . . . the sequence of points produced by Algorithm 1. Then,

E

[
T−1∑
t=0

γt · ‖∇t −∇f(xt)‖2
]
≤ L2n · E

[
T−1∑
t=0

γ3
t · ‖∇t‖2

]

To this end we are ready to summarize the importance of simultaneous additive/multiplicative
dependence of γt in Step 9 of Algorithm 1. This selection permits us to do achieve two orthogonal
goals at the same time,

• Bounding the variance of the process, E
[∑T−1

t=0 ‖∇t −∇f(xt)‖
]
≤ Õ

(
n1/4
√
T
)

(see

Section 3 and Lemma 3).

• Bounding the sum, E
[∑T−1

t=0 ‖∇t‖
]
≤ Õ

(
n5/4
√
T · E

[∑T−1
t=0 γ3

t ‖∇t‖2
])

(see Lemma 4

and Lemma 5).

The third important thing that the selection of γt does is that it permits us to upper bound

the term Õ
(
n5/4 E

[∑T−1
t=0 γ3

t ‖∇t‖2
])

by Õ
(
n1/4

)
. The proof of the latter upper bound can

be found in the proof of Theorem 1 that due to lack of space is deferred to appendix. It
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is interesting that all the above three different purposes can be handled by selecting γt =
n−1/4β0(

√
n ·G2

0 +
∑t
s=0‖∇s‖2)−1/2.

5. Experiments

We complement our theoretical findings with an evaluation of the numerical performance of
the algorithm under different experimental setups. We aim to highlight the sample complexity
improvements over simple stochastic methods, while displaying the advantages of adaptive
step-size strategies. For that purpose we design two setups; first, we consider the minimization
of a convex loss with a non-convex regularizer in the sense of Wang et al. [51] and in a second
part we consider an image classification task with neural networks.

5.1. Convex loss with a non-convex regularizer. We consider the following problem:

min
x∈Rd

1

n

n∑
i=1

`(x, (ai, bi)) + λg(x)

where `(x, (ai, bi)) is the loss with respect to the decision variable/weights x with (ai, bi) denoting

the (feature vector, label) pair. We select g =
∑d
i=1

x2
i

1+x2
i
, similar to Wang et al. [51], where

the subscript denotes the corresponding dimension of x. We compare AdaSpider against
the original Spider, SpiderBoost, Svrg, AdaSvrg and two non-VR methods, Sgd and
AdaGrad. We picked two datasets from LibSVM, namely a1a, mushrooms. We initialize
each algorithm from the same point and repeat the experiments 5 times, then report the mean
convergence with standard deviation as the shaded region around the mean curves. We tune the
algorithms by executing a parameter sweep for their initial step-size over an interval of values
which are exponentially scaled as

{
10−3, 10−2, ..., 102, 103

}
. After tuning the algorithms on one

dataset, we run them with the same parameters for the others.

First, we clearly observe the difference between Sgd & AdaGrad, and the rest of the pack,
which demonstrates the superior sample complexity of VR methods in general. Among VR
algorithms, there does not seem to be any concrete differences with similar convergence, except
for Spider. The performance of AdaSpider is on par with other VR methods, and superior
to Spider. The unexpected behavior of Spider algorithm has previously been documented
in Wang et al. [51]. From a technical point of view, this behavior is predominantly due to the
accuracy dependence in the step-size, making the step-size unusually small. We had to run
Spider beyond its prescribed setting and tune the step-size with a large initial value to make
sure the algorithm makes observable progress.

5.2. Experiments with neural networks. In our second setup, we train neural networks with
our variance reduction scheme. Our focus is on standard image classification tasks trained with
the cross entropy loss [9, 10]. Denoting by C the number of classes, the considered datasets in this
section consist of n pairs (ai, bi) where ai is a vectorized image and bi ∈ RC is a one-hot encoded
class label. A neural network is parameterized with weights x ∈ Rd and its output on is denoted
net(x, a) ∈ RC , where a is the input image. The training of the network consists of solving
the following optimization problem: minx∈Rd

1
n

∑n
i=1

(
−b>i net(x, ai) + logsumexp(net(x, ai))

)
.

This is the default setup for doing image classification and we test our algorithm on two
benchmark datasets : MNIST[30] and FashionMNIST[54]. We choose 3-layer fully connected
network with dimensions [28 ∗ 28, 512, 512, 10]. The activation function is the ELU [11].
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Figure 1. Logistic regression with non-convex regularizer on LibSVM datasets

Initialization: The initialization of the network is a crucial component to guarantee good
performance. We find that a slight modification of the Kaiming Uniform initialization [22]
improves the stability of the tested variance reduction schemes. For each layer in the network
with din inputs, the original method initializes the weights with independent uniform random
variables with variance 1

din
. Our modification initializes with a smaller variance of cinit

din
with

cinit in the order of 0.01. With this choice, we observed that fewer variance reductions schemes
diverged, and standard algorithms like SGD and AdaGrad(for which the original method was
tuned), were not penalized and performed well. This often overlooked initialization heuristic is
the only “tuning” needed for AdaSpider.
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Figure 2. Gradient norms throughout the epochs for image classification with
neural networks (curves are averaged over 5 independent runs and the shaded
region are the standard error).

Table 2. Algorithm parameters and test accuracies (average of 5 runs, in %)

MNIST FashionMNIST

Batch Size = 32, cinit = 0.03 Batch Size = 128, cinit = 0.01
Algorithm Parameters Test Accuracy Parameters Test Accuracy

AdaGrad[16] η = 0.01, ε = 10−4 97.86 η = 0.01, ε = 10−4 86.19
SGD[46] η = 0.01 98.11 η = 0.01 85.83

KatyushaXw[3] η = 0.005 97.93 η = 0.01 86.27
AdaSVRG[15] η = 0.1 98.03 η = 0.1 86.82
Spider[19] ε = 0.01, L = 100.0, n0 = 1 97.53 ε = 0.01, L = 50.0, n0 = 1 82.22

SpiderBoost[42, 51] L = 200 97.01 L = 120 84.42
AdaSpider n = 60000 97.49 n = 60000 84.09

Observations: We observe (Figure 2) that AdaSpider performs as well as other variance reduction
methods in terms of minimizing the gradient norm. The key message here is that it does so
without the need for extensive tuning. This diminished need for tuning is a welcome feature
for deep learning optimization, but, often the true metric of interest is not the gradient norm,
but the accuracy on unseen data, and on this metric variance reduction schemes are not yet
competitive with simpler methods like SGD. With AdaSpider, the focus can go to finding the right
initialization scheme and architecture to ensure good generalization without being distracted by
other parameters like the step-size choice.
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Appendix A. Omitted Proofs

We first state two technical lemmas that have been extensively used in the analysis of adaptive
methods, the proofs of which can be found in [31].

Lemma 6. Let a sequence of non-negative real numbers α1, . . . , αT ≥ 0 then√√√√ T∑
t=1

αt ≤
T∑
t=1

αt√∑t
s=1 αs

Lemma 7. Let a sequence of non-negative real numbers α1, . . . , αT ≥ 0 then

T∑
t=1

αt

1 +
∑t
s=1 αs

≤ log

(
1 +

T∑
t=1

αt

)
Lemma 1. Define the gradient estimator at point x as ∇x := ∇fi(x)−∇fi(y) +∇y where i is
sampled uniformly at random from {1, . . . , n}. Then,

E
[
‖∇x −∇f(x)‖2

]
≤ L2‖x− y‖2 + E

[
‖∇y −∇f(y)‖2

]
Proof.

E
[
‖∇x −∇f(x)‖2

]
= E

[
‖∇fi(x)−∇fi(y) +∇y −∇f(x)‖2

]
= E

[
‖∇fi(x)−∇fi(y) +∇y −∇f(x) +∇f(y)−∇f(y)‖2

]
= E

[
‖∇fi(x)−∇fi(y)−∇f(x) +∇f(y)‖2

]
+ 2 · E [〈∇fi(x)−∇fi(y)−∇f(x) +∇f(y),∇y −∇f(y)〉]
+ E

[
‖∇y −∇f(y)‖2

]
Notice that E [∇fi(x)−∇fi(y)−∇f(x) +∇f(y)] = 0 due to the fact that i is selected

uniformly at random in {1, . . . , n} and thus E [∇fi(x)−∇fi(y)] = ∇f(x)−∇f(y). The latter
implies that,

E
[
‖∇x −∇f(x)‖2

]
= E

[
‖∇fi(x)−∇fi(y)−∇f(x) +∇f(y)‖2

]
+ E

[
‖∇y −∇f(y)‖2

]
≤ E

[
‖∇fi(x)−∇fi(y)‖2

]
+ E

[
‖∇y −∇f(y)‖2

]
≤ L2 · E

[
‖x− y‖2

]
+ E

[
‖∇y −∇f(y)‖2

]
where the first inequality follows by the identity E

[
‖X − E [X]‖2

]
= E[‖X‖2]− ‖E [X]‖2 and

the second inequality by the smoothness of the function fi(x). �

Lemma 2. Let x0, x1, . . . , xT the points produced by Algorithm 1. Then,

T−1∑
t=0

‖∇t‖2 ≤ O
(
n2T 3 ·

(
L2

β2
0

+ ‖∇f(x0)‖2
))

Proof. The selection of the step-size in Step 9 of Algorithm 1 implies that ‖xt+1 − xt‖2 =
‖γt∇t‖2 ≤ 1/β2

0 . Due to the fact that every n iterations a full-gradient computation is
performed, the estimator ∇t := ∇fit(xt)−∇fit(xt−1) +∇t−1 can be equivalently written as

∇t =

t∑
s=t−t mod n+1

(∇fis(xs)−∇fis(xs−1)) +∇f(xt−t mod n)
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As a result,

‖∇t‖2 = ‖
t∑

s=t−t mod n+1

(∇fis(xs)−∇fis(xs−1)) +∇f(xt−t mod n)‖2

≤ 2 · ‖
t∑

s=t−t mod n+1

∇fis(xs)−∇fis(xs−1)‖2 + 2 · ‖∇f(xt−t mod n)‖2

≤ 2n ·
t∑

s=t−t mod n+1

‖∇fis(xs)−∇fis(xs−1)‖2 + 2 · ‖∇f(xt−t mod n)‖2

≤ 2nL2 ·
t∑

s=t−t mod n+1

‖xs − xs−1‖2 + 2 · ‖∇f(xt−t mod n)‖2

≤ 2L2n2

β2
0

+ 2 · ‖∇f(xt−t mod n)‖2

Now, we want to upper bound ‖∇f(xt)‖ for any t ≤ T with respect to the initial gradient norm.
Using again the step-size selection γt we get,

‖∇f(xt)‖ = ‖∇f(xt)−∇f(x0) +∇f(x0)‖
≤ ‖∇f(xt)−∇f(x0)‖+ ‖∇f(x0)‖ (Triangular inequality)

≤ L‖xt − x0‖+ ‖∇f(x0)‖ (Smoothness)

≤ L‖xt − xt−1‖+ L‖xt−1 − x0‖+ ‖∇f(x0)‖ (Triangular inequality)

≤ L
t∑
i=1

‖xi − xi−1‖+ ‖∇f(x0)‖

≤ Lt

β0
+ ‖∇f(x0)‖

As a result,

T−1∑
t=0

‖∇t‖2 ≤
T−1∑
t=0

(
2L2n2

β2
0

+ 2 · ‖∇f(xt−t mod n)‖2
)

≤ 2L2n2

β2
0

T + 2
T−1∑
t=0

‖∇f(xt)‖2

≤ 2L2n2

β2
0

T + 2

T−1∑
t=0

(
Lt

β0
+ ‖∇f(x0)‖)2

=
2L2n2

β2
0

T + 2

T−1∑
t=0

(
L2t2

β2
0

+ 2
Lt

β0
‖∇f(x0)‖+ ‖∇f(x0)‖2

)
≤ 2L2n2

β2
0

T +
2L2T 3

β2
0

+
4LT 2‖∇f(x0)‖

β0
+ 2T‖∇f(x0)‖2

�

Lemma 3. Let x0, x1 . . . , xT the sequence of points produced by Algorithm 1. Then,

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ O

(
Ln1/4

β0

√
log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
.
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Proof.

E

[
T−1∑
t=0

‖∇t −∇f(xt)‖

]
= E


√√√√(T−1∑

t=0

‖∇t −∇f(xt)‖

)2


≤

√√√√√E

(T−1∑
t=0

‖∇t −∇f(xt)‖

)2
 (Jensen’s ineq.)

≤
√
T ·

√√√√E

[
T−1∑
t=0

‖∇t −∇f(xt)‖2
]

where the last inequality follows by the fact that ‖
∑T−1
t=0 yt‖2 ≤ T ·

∑T−1
t=0 ‖yt‖2. By applying

Lemma 1 to the estimator ∇t := ∇fit(xt)−∇fit(xt−1) +∇t−1 we get,

E
[
‖∇t −∇f(xt)‖2

]
≤ L2E

[
‖xt − xt−1‖2

]
+ E

[
‖∇t−1 −∇f(xt−1)‖2

]
≤ L2E

[
γ2
t−1‖∇t−1‖2

]
+ E

[
‖∇t−1 −∇f(xt−1)‖2

]
≤ L2E

[
γ2
t−1‖∇t−1‖2

]
+ . . .+ E

[
‖∇t−(t mod n) −∇f(xt−(t mod n)‖2

]
=

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ‖∇τ‖2

]
where the last equality follows by the fact that E

[
‖∇t−(t mod n) −∇f(xt−(t mod n)‖2

]
= 0 (see

Step 3 of Algorithm 1). As explained in Section 3, by a telescoping summation over t we get
that

T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ L2n · E

[
T−1∑
t=0

γ2
t · ‖∇t‖2

]
.

Now as discussed in Section 3, using the step-size selection γt of Algorithm 1 we can provide a
bound on the total variance E

[
‖∇t −∇f(xt)‖2

]
T−1∑
t=0

E
[
‖∇t −∇f(xt)‖2

]
≤ L2n E

[
T−1∑
t=0

γ2
t · ‖∇t‖2

]

=
L2
√
n

β2
0

E

[
T−1∑
t=0

‖∇t‖2√
nG2

0 +
∑t
s=0‖∇s‖2

]

≤ L2
√
n

β2
0

log

(
1 + E

[
T−1∑
t=0

‖∇t‖2/G2
0

])

≤ L2
√
n

β2
0

· O
(

log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
where the second inequality follows by Lemma 7 and the third inequality by Lemma 2. Putting
everything together we get

1

T
E

[
T−1∑
t=0

‖∇t −∇f(xt)‖

]
≤ Ln1/4

β0

√
T
· O

(√
log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
�
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Lemma 4. Let x0, x1, . . . , xT−1 the sequence of points produced by Algorithm 1 and ∆0 :=
f(x0)− f∗. Then,

E

[
T−1∑
t=0

‖∇t‖

]
≤ O

(
∆0 · β0 +G0 +

L

β0
log

(
1 + nT · L+ ‖∇f(x0)‖

G0

)
+ β0 · E

[
T−1∑
t=0

γt‖∇f(xt)−∇t‖2
])
·n1/4

√
T .

Proof. Let Ft denote the filtration at round t i.e. all the random choices {i0, . . . , it} and the
initial point x0. By the smoothness of f we get that,

E [f(xt+1) | Ft] ≤ E
[
f(xt) +∇f(xt)

>(xt+1 − xt) +
L

2
‖xt − xt+1‖2 | Ft

]
= E

[
f(xt)− γt∇>t ∇f(xt) +

L

2
γ2
t ‖∇t‖2 | Ft

]
≤ E

[
f(xt) +

γt
2
‖∇t −∇f(xt)‖2 −

γt
2

(1− Lγt)‖∇t‖2 | Ft
]

Thus,

E
[
γt · ‖∇t‖2

]
≤ 2E [f(xt)− f(xt+1)] + E

[
Lγ2

t · ‖∇t‖2
]

+ β0 · E
[
γt · ‖∇f(xt)−∇t‖2

]
.

and by summing from t = 0 to T − 1 we get,

T−1∑
t=0

E
[
γt · ‖∇t‖2

]
≤ 2∆0 + E

[
T−1∑
t=0

Lγ2
t · ‖∇t‖2

]
+ E

[
T−1∑
t=0

γt · ‖∇f(xt)−∇t‖2
]

Using the fact that γt := n−1/4β−1
0

(
n1/2G2

0 +
∑t
s=0‖∇s‖2

)−1/2

on the second summation term,

E

[
T−1∑
t=0

γt · ‖∇t‖2
]
≤ 2∆0 + E

[
T−1∑
t=0

Lγ2
t · ‖∇t‖2

]
+ E

[
T−1∑
t=0

γt · ‖∇f(xt)−∇t‖2
]

≤ 2∆0 +
L

β2
0

· E

[
T−1∑
t=0

‖∇t‖2√
nG2

0 +
∑t
s=0‖∇t‖2

]

+ E

[
T−1∑
t=0

γt · ‖∇f(xt)−∇t‖2
]

≤ 2∆0 +
L

β2
0

· O
(

log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
+ E

[
T−1∑
t=0

γt · ‖∇f(xt)−∇t‖2
]
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Using again the definition of the step-size γt := n−1/4β−1
0

(
n1/2G2

0 +
∑t
s=0‖∇s‖2

)−1/2

we lower

bound the right-hand side as follows,

E

[
T−1∑
t=0

γt · ‖∇t‖2
]
≥ E

 ∑T−1
t=0 ‖∇t‖2

n1/4β0

√
n1/2G2

0 +
∑T−1
t=0 ‖∇t‖2


≥ G0

β0
· E

 ∑T−1
t=0 ‖∇t‖2/

√
nG2

0√
1 +

∑T−1
t=0 ‖∇t‖2/

√
nG2

0


≥ G0

β0
·

E


√√√√T−1∑

t=0

‖∇t‖2/
√
nG2

0

− 1


≥ 1

β0n1/4
√
T
E

[
T−1∑
t=0

‖∇t‖

]
− G0

β0

By putting everything together we get,

E

[
T−1∑
t=0

‖∇t‖

]
≤ O

(
∆0 · β0 +G0 +

L

β0
log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))

+ O

(
β0 · E

[
T−1∑
t=0

γt‖∇f(xt)−∇t‖2
])
· n1/4

√
T .

�

Lemma 5. Let x0, x1, . . . , xT−1 the sequence of points produced by Algorithm 1. Then,

E

[
T−1∑
t=0

γt · ‖∇t −∇f(xt)‖2
]
≤ L2n · E

[
T−1∑
t=0

γ3
t · ‖∇t‖2

]

Proof. Let Ft denotes the filtration at round t i.e. all the random choices {i0, . . . , it} and the
initial point x0. At first notice that by the definition of γt in Step 9 of Algorithm 1, γt ≤ γt−1,
which we have to do to circumvent non-measurability issues, and thus

E
[
γt‖∇t −∇f(xt)‖2 | Ft−1

]
≤ E

[
γt−1 · ‖∇t −∇f(xt)‖2 | Ft−1

]

Up next we derive a bound on E
[
γt−1 · ‖∇t −∇f(xt)‖2 | Ft−1

]
using similar arguments

with the ones used in Lemma 3. Notice that γt−1 is Ft−1-measurable, hence we can treat in
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independent of the conditional expectation.

E
[
γt−1‖∇t −∇f(xt)‖2 | Ft−1

]
= γt−1E

[
‖∇fit(xt)−∇fit(xt−1)−∇f(xt) +∇f(xt−1) + (∇t−1 −∇f(xt−1))‖2 | Ft−1

]
= γt−1E

[
‖∇fit(xt)−∇fit(xt−1)−∇f(xt) +∇f(xt−1)‖2 | Ft−1

]
+ γt−1 E

[
(∇fit(xt)−∇fit(xt−1)−∇f(xt) +∇f(xt−1))>(∇t−1 −∇f(xt−1)) | Ft−1

]︸ ︷︷ ︸
0

+ γt−1E
[
‖∇t−1 −∇f(xt−1)‖2 | Ft−1

]
= γt−1E

[
‖∇fit(xt)−∇fit(xt−1)‖2 | Ft−1

]
+ γt−1E

[
‖∇t−1 −∇f(xt−1)‖2 | Ft−1

]
≤ L2γt−1E

[
‖xt − xt−1‖2 | Ft−1

]
+ γt−1E

[
‖∇t−1 −∇f(xt−1)‖2 | Ft−1

]
= L2γ3

t−1E
[
‖∇t−1‖2 | Ft−1

]
+ γt−1E

[
‖∇t−1 −∇f(xt−1)‖2 | Ft−1

]
Taking full expectation over all randomness and by the law of total expctation, we get that,

E
[
γt‖∇t −∇f(xt)‖2

]
≤ L2E

[
γ3
t−1‖∇t−1‖2

]
+ E

[
γt−1‖∇t−1 −∇f(xt−1)‖2

]

Due to the fact that E [‖∇t −∇f(xt)‖] = 0 for t mod n == 0 we get that

E
[
γt · ‖∇t −∇f(xt)‖2

]
≤ L2E

[
t−1∑

s=t−t mod n

γ3
s‖∇s‖2

]
and thus

E

[
T−1∑
t=0

γt · ‖∇t −∇f(xt)‖2
]
≤ L2n · E

[
T−1∑
t=0

γ3
t ‖∇t‖2

]
�

Theorem 1. Let x0, x1, . . . , xT−1 be the sequence of points produced by Algorithm 1 in case
f(·) is L-smooth. Let us also define ∆0 := f(x0)− f∗. Then,

1

T

T−1∑
t=0

E [‖∇f(xt)‖] ≤ O
(
n1/4 · ∆0 · β0 +G0 + L/β0 + L2/β2

0G0√
T

· log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
Overall, Algorithm 1 with β0 := 1 and G0 := 1 needs at most Õ

(
n+
√
n · ∆2

0+L4

ε2

)
oracle calls

to reach an ε-stationary point.

Proof of Theorem 1. By the triangle inequality we get that

E

[
T−1∑
t=0

‖∇f(xt)‖

]
≤ E

[
T−1∑
t=0

‖∇t‖

]
+ E

[
T−1∑
t=0

‖∇f(xt)−∇t‖

]
Using the bounds obtained in Lemma 3 and Lemma 4 we get that,

E

[
T−1∑
t=0

‖∇f(xt)‖

]
≤ Õ

(
∆0 · β0 +G0 +

L

β0

)
n1/4
√
T

+ β0 · E

[
T−1∑
t=0

γt‖∇f(xt)−∇t‖2
]
n1/4
√
T
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Then by Lemma 5 we get that,

E

[
T−1∑
t=0

‖∇f(xt)‖

]
≤ Õ

(
∆0 · β0 +G0 +

L

β0

)
n1/4
√
T

+ β0 · n5/4
√
TL2 · E

[
T−1∑
t=0

γ3
t ‖∇t‖2

]
︸ ︷︷ ︸

(A)

Substituing the selection of γt in term (A) we get,

β0

√
TL2 · E

[
T−1∑
t=0

n5/4γ3
t ‖∇t‖2

]
=

√
TL2

β2
0

· E

T−1∑
t=0

n5/4

n3/4

√
n1/2G2

0 +
∑t
s=0‖∇t‖2

· ‖∇t‖2

n1/2G2
0 +

∑t
s=0‖∇t‖2


≤
√
TL2

β2
0G0

· E

[
T−1∑
t=0

n5/4

n3/4
√
n1/2

· ‖∇t‖2/G2
0

n1/2 +
∑t
s=0‖∇t‖2/G2

0

]

≤
√
TL2

β2
0G0

· n1/4 · E

[
T−1∑
t=0

‖∇t‖2/G2
0

1 +
∑t
s=0‖∇t‖2/G2

0

]

≤
√
TL2

β2
0G0

· n1/4 · O
(

log

(
1 + nT ·

(
L

β0G0
+
‖∇f(x0)‖

G0

)))
where the forth inequality follows by Lemma 7 and the last by Lemma 2. Theorem 1 then
follows by dividing both sides with T . �
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