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Abstract

We introduce an online learning algorithm in the bandit feedback model that, once adopted by all agents
of a congestion game, results in game-dynamics that converge to an ǫ-approximate Nash Equilibrium in
a polynomial number of rounds with respect to 1/ǫ, the number of players and the number of available
resources. The proposed algorithm also guarantees sublinear regret to any agent adopting it. As a result,
our work answers an open question from [29] and extends the recent results of [68] to the bandit feedback
model. We additionally establish that our online learning algorithm can be implemented in polynomial

time for the important special case of Network Congestion Games on Directed Acyclic Graphs (DAG) by
constructing an exact 1-barycentric spanner for DAGs.

1 Introduction

Congestion games represent a class of multi-agent games where n self-interested agents compete over m
resources. Each agent chooses a subset of these resources, and their individual costs depend on the utilization
of each selected resource (i.e., the number of other agents utilizing the same resource). For instance, in
Network Congestion Games, a graph is given, and each agent i aims to travel from an initial vertex si to a
designated destination vertex ti. The agent must then select a set of edges (i.e resources) constituting a valid
(si, ti)-path in the graph, while also trying to avoid congested edges.

Congestion games have been extensively studied over the years due to their wide-ranging applications [58,
73, 25, 41, 55, 72]. They always admit a Nash Equilibrium (NE) which is a steady state at which no agent can
decrease their cost by unilaterally deviating to another selection of resources [71]. A Nash equilibrium is a
static solution concept meaning that it does not describe how agents can end up in such an equilibrium state
nor it indicates how agents should update their strategies. It is well-known that better response dynamics,
in which agents sequentially update their resource selection, converges to a Nash Equilibrium and achieves
accelerated rates for interesting special cases of congestion games [24, 44].

Despite the aforementioned positive convergence results, better response dynamics admit several caveats.
The first is that their convergence properties heavily rely on the agents updating their strategies in a round-
robin scheme which is a strong assumption in decentralized settings (in case of simultaneous updates better
response dynamics may not converge to NE). The second is that computing a better response comes with the
assumption that the agents are aware of the loads of all the available resources [24]. Finally, better response
does not come with any kind of guarantees to individual agents, which raises concerns as to why a selfish
agent should behave according to best-response.

Fortunately the online learning framework [50] provides a very concrete answer on what natural strategic
behavior means [34]. There are various no-regret algorithms that a selfish agent can adopt in the context
of repeated game-playing and guarantee that no matter the actions of the other agents, the agents suffer a
cost comparable to the cost of the best fixed action [6, 78] chosen in hindsight. The latter guarantees persist

*Equal contribution.
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even under bandit feedback model at which the agent learns only the cost of its selected actions (resource-
selection in the context of congestion games) [9, 7]. Due to the forementioned merits of bandit online
learning algorithms, there exists a long line of works providing no-regret bandit online learning algorithms
in the context of congestion games [11, 30, 48, 14, 21, 54, 66, 8]1.

Despite the long interest in bandit online learning algorithms for congestion games, the convergence to
Nash Equilibrium of such bandit learning algorithms remains unexplored. To the best of our knowledge
[29] were the first to provide an update rule (performing under bandit feedback) that once adopted by all
agents of a congestion game, the resulting strategies converge to an ǫ-approximate Nash Equilibrium with
rate polynomial in n, m and 1/ǫ. However the update rule proposed by [29] does not guarantee the no-regret
property. As a result, [29] asked the following question:

Open Question ([29]) Is there there an online learning algorithm performing under the bandit feedback
such that

1. guarantees no-regret to any agent that adopts it

2. once adopted by all agents of a congestion game, the resulting strategies converge to an ǫ-approximate
Nash Equilibrium in poly(n,m, 1/ǫ) rounds.

In their recent work [68] provided a positive answer for the semi-bandit feedback model in which the agents
learn the cost of every single selected edge. We remark that in the bandit feedback the agents only learns the
overall, total, cost of the selected path (sum of the costs of the selected edges) and thus semi-bandit feedback
comes as a special case of the bandit feedback.

1.1 Our Contribution and Techniques

The main contribution of our work consists in providing a positive answer to the open question of [29].
More precisely, we provide an online learning algorithm, called Online Gradient Descent with Caratheodory
Exploration, that simultaneously provides both regret guarantees and convergence to Nash Equilibrium.

Informal Theorem There exists an online learning algorithm (Online Gradient Descent with Caratheodory
Exploration, BGD− CE) that performs under bandit feedback and guarantees O(m2.8T 4/5) regret to any agent
that adopts it. Moreover if all agent adopt BGD− CE, then the resulting strategies converge to an ǫ-Nash
Equilibrium after O(n13.5m9/ǫ5) steps.

We additionally remark that our proposed online learning algorithm additionally improves on the convergence
rate of the algorithm of [29]. The next table summarizes the regret bounds and the convergence results of
the various online learning algorithms proposed over the years.

Table 1: Comparison with previous related works. ⋆A regret bound of O
(

m3T 3/4
)

can be obtained under a
different choice of step size and exploration coefficients (see Remark 13)

Regret Gurantees and Convergence rates
Method Regret Guarantees Convergence to NE Type of Feedback

EXP3 [9] O(
√
2mT ) No Bandit

Awerbuck & Kleinberg [11] O(m5/3T 2/3) No Bandit

GeometricHedge [30] O(m1.5
√
T ) No Bandit

Frank-Wolfe with Exploration [29] Not Available O(n11m12/ǫ6) Bandit

SBGD-CE [68] O(m2T 4/5) O(n6m7/ǫ5) Semi-Bandit
BGD-CE (This Work) O(m2.8T 4/5)⋆ O(n13.5m13/ǫ5) Bandit

1The setting is mostly know as Online Path Planning or linear bandits in the online learning literature.
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Remark 1. We remark that due to their no-regret properties the online learning algorithms proposed by
[9, 11, 30, 14] converge to a Coarse Correlated Equilibrium - an equilibrium notion that in the context of
congestion/potential games differs from Nash Equilibrium [27, 12]. No-regret dynamics are guaranteed to
converge to Coarse Correlated Equilibria, which is a strict superset of Nash Equilibria and moreover can even
contain strictly dominated strategies [74].

All the aforementioned online learning algorithms concern general congestion games in which the strategy
spaces of the agents do not admit any kind of combinatorial structure. As a result, all of the above online
learning algorithms require exponential time with respect to the number of resources2. For the important
special case of Network Congestion Games in Directed Acyclic Networks [11, 42, 43, 5, 38], we provide a
variant of our algorithm that preserves the above guarantees while running in polynomial time with respect
to the number of edges.

Informal Theorem For Network Congestion games in Acyclic Directed Graphs (DAGs), Online Gradient
Descent with Caratheodory Exploration, can be implemented in polynomial time.

Our Techniques The fundamental difficulty in designing no-regret online learning algorithms under bandit
feedback is to guarantee that each resource is sufficiently explored. Unfortunately, standard bandit algorithms
such as EXP3 [9] result in regret bounds of the form O(2m/2

√
T ), that scale exponentially with respect to m.

However, a long line of research in combinatorial bandits has produced algorithms with a regret polynomially
dependent onm [11, 30, 48, 14, 21, 54, 66, 8]. These algorithms, in order to overcome the exploration problem,
use various techniques that can roughly be categorized two camps, simultaneous exploration versus alternating
explore-exploit, as described by [1]. However, to the best of our knowledge, none of these algorithms have
been shown to converge to NE in congestion games once adopted by all agents (see Remark 1).

Our online learning algorithm, guaranteeing both no-regret and convergence to equilibrium, is based on
combining Online Gradient Descent [78] with a novel exploration scheme, much like [37]. Our exploration
strategy is based on coupling the notion of barycentric spanners [11] with the notion of Bounded-Away
Polytopes proposed by [68] for the semi-bandit case. More precisely, [68] introduced the notion of µ-Bounded
Away Polytope which corresponds to the description polytope of the strategy space (convex hull of all pure
strategies) with the additional constraint that each resource is selected with probability at least µ > 0.
Projecting on this polytope ensures that the variance of the unobserved cost estimators remains bounded. In
order to capture bandit estimators, we extend the notion of µ-Bounded Away Polytope to denote the subset
of the description polytope for which each point admits a decomposition with least µ weight on a pre-selected
barycentric spanner B.

This technique of projecting on µ-Bounded polytopes closely ressembles the mixing strategies employed
in online learning schemes that have alternating explore-exploit rounds. In those strategies, a fixed measure
is added to bias the algorithm’s chosen strategy. The projection on µ-Bounded polytopes, however, scales the
point before adding a bias, and, in some rounds, does not alter the point. It is therefore a mix of simultaneous
and alternating exploration, depending on the round.

As all the previous online learning algorithms, Online Gradient Descent with Caratheodory Exploration
(OGD− CE), requires exponential-time in the case of general congestion games at which there is no combi-
natorial structure on the resources. In order to provide an polynomial-time implementation of OGD− CE
for Network Congestion Games on Directed Acyclic Graphs we need to overcome a fundamental difficulty. In
Section 4.2, we propose a novel construction of barycentric spanners for DAGs that outputs a 1-barycentric
spanner in polynomial time (see Algorithm 4).

1.2 Related Work

Online Learning and Nash Equilibrium Our work falls squarely within the recent line of research
studying the convergence properties of online learning dynamics in the context of repeated games [70, 2, 32,
4, 36, 53, 76, 63, 27]. Specifically [51, 67, 63, 76] establish asymptotic convergence guarantees for potential
normal form games; congestion games are known to be isomorphic to potential games [64]. Most of the
aforementioned works use techniques from stochastic approximation and are orthogonal to ours. Furthermore,

2[11] present an online learning algorithms that runs in polynomial-time for Network Congestion Games in Directed Acyclic
Graphs
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[22, 75] study the convergence properties of first-order methods in non-atomic congestion games; non-atomic
congestion games capture continuous populations and result in convex landscapes. On the other hand, atomic
congestion games (the focus of this paper) result in non-convex landscapes.

Bandits and Online Learning As already mentioned, our setting has been studied within the realm of
online learning and bandits, where several no-regret algorithms for congestion games (or linear bandits) have
been proposed. The main difference between our and previous works is that, once the previously proposed
algorithms are adopted by all agents, the overall system only converges to a Coarse Correlated Equilibrium
and not necessarily to a Nash equilibrium as our algorithm guarantees (see [68]). The design of no-regret
algorithms for this setting began with [10] where a O(T 2/3) regret bound was achieved for linear bandit
optimization against an oblivious adversary via introducing the notion of barycentric spanners. Then [62]
built on this to propose a O(T 3/4) algorithm for linear bandits against an adaptive adversary using again the
barycentric spanners. The work of [49] also proposed a scheme achieving the same O(T 3/4) rate. Then, the
optimal rates were obtained by [31] who were the first to get O(

√
T ) expected regret with the geometric hedge

algorithm and closely followed by [1] who achieved the same expected regret using self-concordant barriers.
Both these optimal rates were obtained with barriers (entropic or self-concordant) that diverge as points get
close to the boundary of the strategy space. Unfortunately such barriers significantly degrade convergence
rates to equilibria so we instead use ℓ2 regularization in our work.

Relatively recent papers have focused on providing efficient algorithms with high-probability guarantees
against adaptive adversaries [13, 59, 77]. See also [20] for a general framework on combinatorial bandits.

Existence and Equilibrium Efficiency In the context of Network Congestion games, the problem of
equilibrium selection and efficiency has received a lot of interest. In [58], the notion of Price of Anarchy
(PoA) was introduced that captures the ratio between the worst-case equilibrium and the optimal path
assignment. Later works provided bounds on PoA [73, 25, 41, 55, 72, 61] for both atomic and non-atomic
settings. Another line of work has to do with the computational complexity of computing Nash equilibria in
Network congestion games. Notably in [35] it was shown that computing a Nash equilibrium in symmetric
Network Congestion games can be done in polynomial time and also showed that in the asymmetric case,
computing a pure Nash equilibrium belongs to class PLS (believed to be larger class than P). Further
works appearred that investigate deterministic or randomized polynomial time approximation schemes for
approximating a Nash equilibrium [40, 39, 18, 17, 15, 16, 26, 46, 45, 57, 56, 7].

2 Preliminaries and Results

In this section, we provide the necessary background on congestion games, the bandit feedback model and
we introduce the mathematical notation used throughout the paper.

We start with some elmentary notation. For a matrix A with singular value decomposition A = UΣV T ,
we define its pseudoinverse, denoted as A+, as A+ := V Σ+UT where Σ+ is obtained taking the inverse of
each non-zero element of the diagonal matrix Σ. We denote by 1 the vector whose coordinates are all equal
to 1. The notation f = O(g) signifies that there exists a constant C > 0, independent of problem parameters,
such that f ≤ Cg, the notation f = Õ(g) further hides log(T ) terms.

2.1 Congestion games

In congestion games, there exist a set of n selfish agent and a set of m resources E. Each agent i ∈ [n] can
select a subset of the resources pi ∈ Si ⊆ 2E . A selection of resources pi ∈ Si is also called a pure strategy
while the set of all pure strategies Si is also called strategy space. A selection of pure strategies profiles
p = (p1, . . . , pn) ∈ S1 × · · · × Sn is called joint strategy profile and the set S := S1 × · · · × Sn is called joint
strategy space. For a joint strategy profile p ∈ S, we also use the notation p = (pi, p−i) to isolate (only in
syntax) the strategy pi of agent i from the rest of the strategies p−i of the other agents.

Given p = (p1, . . . , pn) ∈ S, the load of resource e ∈ E, denoted as ℓe(p), equals

ℓe(p) =
n
∑

i=1

1 (e ∈ pi) .
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and corresponds to the number of agents who have selected e in their pure strategy. Each resource is
additionally associated with a non-negative, non-decreasing congestion cost function ce : N → [0, cmax] that
associates a cost ce(ℓ) for a given load ℓ. For a joint strategy profile p = (pi, p−i) ∈ S, the cost of agent
i ∈ [n] equals,

Ci(pi, p−i) =
∑

e∈pi

ce(ℓe(pi, p−i)).

and captures the congestion cost ce(ℓe(p)) of using resource e ∈ pi.

Definition 1 (Nash equilibrium). A joint strategy profile p = (p1, . . . , pn) ∈ S is called an ǫ-approximate
pure Nash equilibrium if and only if for all agents i ∈ [n],

Ci(pi, p−i) ≤ Ci(p
′
i, p−i) + ǫ for any p′i ∈ Si

To simplify notation we note that a pure strategy pi ∈ Si can also be viewed as a 0/1 vector xpi ∈ {0, 1}m.
Moreover given a joint strategy profile p = (pi, p−i) ∈ Si, we can construct a cost vector c(ℓ(p)) ∈ R

m where
ce(ℓ(p)) = ce(ℓe(pi, p−i)). Then the cost of agent i ∈ [n] can be concisely described by an inner product as,

Ci(pi, p−i) =
∑

e∈pi

ce(ℓe(pi, p−i)) = 〈c(ℓ(p)), pi〉 .

An agent i ∈ [n] can also select a probability distribution over its pure strategies Si. Such a probability
distribution πi ∈ ∆(Si) is called a mixed strategy.

Definition 2 (Expected cost). Given joint mixed strategy profile π = (πi, π−i), the expected cost of agent i,
equals

Ci(πi, π−i) := Ep∼(πi,π−i) [Ci(p)]

The notion of Nash Equilibrium provided in Definition 1 can be naturally extended in the context of mixed
strategies.

Definition 3 (Mixed Nash equilibrium). A mixed joint strategy profile π := (π1, . . . , πn) ∈ ∆(S‘)×· · ·×∆(Sn)
is called an ǫ-approximate mixed Nash equilibrium if and only if for all agents i ∈ [n],

Ci(πi, π−i) ≤ Ci(π
′
i, π−i) + ǫ for any π′

i ∈ ∆(Si).

Network Congestion Games An important special case of Congestion Games are the so-called Network
Congestion Games [35]. In Network Congestion Games there exits an underlying directed graph G(V,E)
with the edges E correspond to the available resources. Each agent i ∈ [n] is associated with a sink node
si ∈ V and a target node ti ∈ V while its strategy space Si ⊆ E equals,

Si = {all (st, ti)-paths in the graph G(V,E).}

A directed graph G(V,E) is called Directed Acyclic Graph (DAG) in case there are no cycles in G(V,E). The
special structure of network games over DAGs allows for computationally efficient algorithms.

2.2 Bandit Dynamics in Congestion Games

When a congestion game is repeatedly played over T rounds, each agent i selects a new mixed strategy
πt
i ∈ ∆(Si) at each round t ∈ [T ] in their attempt to minimize their overall cost. The notion of bandit

feedback captures the fact that at the end of each round, each agent i ∈ [n] is only informed on the overall
cost of their selected strategy [29].
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Bandit Dynamics in Congestion Games

At each round t = 1, . . . T ,

1. Each agent i ∈ [n] selects a mixed strategy, πt
i ∈ ∆(Si).

2. Each agent i ∈ [n] samples a pure strategy pti ∼ πt
i and incurs cost

Ci(p
t
i, p

t
−i) =

∑

e∈pt
i

ce(ℓe(p
t
i, p

t
−i))

3. Each agent i ∈ [n] only observes Ci(p
t
i, p

t
−i) (overall cost) and updates its mixed strategy πt+1

i ∈
∆(Si).

The only feedback received by agent i after picking pti is the cost Ci(p
t
i, p

t
−i). This limited feedback is

referred to as bandit feedback [29]. This contrasts with the full information feedback where the agents observes
the cost of all the available resources {ce(ℓ(pt)) : for all e ∈ E} [50] and the semi-bandit feedback setting where
the agent observes the cost of each of the individual resources it has selected {ce(ℓ(pt)) : for all e ∈ pti} [68].

Each agent i ∈ [n] tries to selects the mixed strategies πt
i ∈ ∆(Si) so as to minimize their overall cost over

the T rounds of play. Since the cost of the edges are determined by the strategies of the other agents that
are unknown to agent i, the agent i can assume that the cost of each agents are selected in an arbitrary and
adversarial manner. Recalling that the cost Ci(p

t
i, p

t
−i) is linear in pti, the problem at hand is a particular

instance of the Online Resource Selection under Bandit Feedback [7].

Online Resource Selection under Bandit Feedback

At each round t = 1, . . . , T ,

1. Agent i picks a mixed strategy πt
i ∈ ∆(Si).

2. An adversary picks a cost vector ct ∈ R
m, with ‖ct‖∞ ≤ cmax.

3. Agent i samples a pure strategy pti ∼ πt
i and incurs cost lti = 〈ct, pti〉 .

4. Agent i observes lti and updates its distribution πt+1
i ∈ ∆(Si).

The agent’s goal is therefore to output a sequence of strategies p1:Ti that minimize the incurred costs
against any adversarially chosen sequence of cost vectors c1:T where ct can even depend on π1:t−1

i . The
quality of a sequence of play p1:Ti is measured in terms of regret, capturing its suboptimality with respect to
the best fixed strategy.

Definition 4 (Regret). The regret of the sequence p1:Ti with respect to the cost sequence c1:T equals

R
(

p1:Ti , c1:T
)

:=
T
∑

t=1

〈

ct, pti
〉

− min
u∈Si

T
∑

t=1

〈

ct, u
〉

.

In other words, regret compares the overall cost of a sequence of pure strategies with the cost of the best fixed
strategy in hindsight.

As already mentioned there are various online learning algorithms that even under the bandit feedback model
are able guarantee sublinear regret almost surely. In the online learning literature such algorithms are called
no-regret [10, 30, 48, 14, 21, 54, 66, 8].

Definition 5 (No-Regret). An online learning algorithm A for Linear Bandit Optimization is called no-regret
if and only if for any cost vector sequence c1, . . . , cT , A produces a sequence of mixed strategies π1

i , . . . , π
T
i

(πt+1
i = A(l1i , . . . , lti)) such that with high probability R

(

p1:Ti , c1:T
)

= o(T ).
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No-regret algorithms are considered to be a very natural way of modeling the behavior of selfish agents in
repeatedly played games since they guarantee that the time-averaged cost approaches the time-average cost
of the best fixed actions, no matter the actions of the other agents [34].

2.3 Our Results

The main contribution of our work is the design of a no-regret online learning algorithm (under bandit
feedback) with the property that if adopted by all agents of a congestion game, then the overall strategy
profile converges to a Nash Equilibrium. As already mentioned, our results provide an affirmative answer
to the open question posed by [29]. We also remark that despite the fact that various no-regret have been
proposed over the years they do not guarantee convergence to Nash Equilibrium once adopted by all agents of
a congestion game. The no-regret property of our algorithm is formally stated and established in Theorem 2
while its convergence properties to Nash Equilibrium are presented in Theorem 3.

Theorem 2. There exists a no-regret algorithm, Bandit Gradient Descent with Caratheodory Exploration
(BGD-CE) such that for any cost vector sequence c1, . . . , cT ∈ [0, cmax]

m and δ > 0

R
(

p1:Ti , c1:T
)

:=

T
∑

t=1

∑

e∈pt
i

cte − min
p⋆
i ∈Si

T
∑

t=1

∑

e∈p⋆
i

cte ≤ Õ
(

m5.5c2maxT
4/5

√

log
1

δ

)

with probability 1− δ.

Theorem 3 (Converge to NE). Let π1, . . . , πT ∈ ∆(S1) × . . . × ∆(S1) the sequence of strategy profiles
produced if all agents adopt Bandit Gradient Descent with Caratheodory Exploration (BGD-CE). Then for
all T ≥ Θ

(

n13m13/ǫ5
)

,

1

T
E

[

T
∑

t=1

max
i∈[n]

[

ci(π
t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]

]

≤ ǫ.

We note that the exact same notion of best-iterate convergence (as in Theorem 3) is considered in [29, 60,
33, 3, 68]. In Corollary 1 we present a more clear interpretation of Theorem 3.

Corollary 1. In case all agents adopt BGD-CE for T ≥ Θ(m13m13/ǫ5) then with probability ≥ 1− δ,

• (1− δ)T of the strategy profiles π1, . . . , πT are ǫ/δ2-approximate Mixed NE.

• πt is an ǫ/δ-approximate Mixed NE once t is sampled uniformly at random in {1, . . . , T }

The running time of BGD − CE is exponential in general congestion games at which the strategy space Si
does admit any combinatorial structure. In Theorem 4 we establish that for Network Congestion Games in
Directed Acyclic Networks BGD− CE can be implemented in polynomial time.

Theorem 4. For Network Congestion Games over DAGs, BGD−CE (Algorithm 3) can be implemented in
polynomial time.

The rest of the paper is organized as follows. In Section 3 we present, BGD-CE (Algorithm 2) and explain the
two main ideas behind its design. In Section 4 we present the polynomial-time implementation of BGD-CE
(Algorithm 3) for the special case of Network Congestion Games over DAGs. Finally in Section 5, we present
the basic steps for establishing Theorem 3 and Theorem 4.

3 Bandit Online Gradient Descent with Caratheodory Exploration

In this section, we present our online learning algorithm for general congestion games, called Bandit Online
Gradient Descent with Caratheodory Exploration. The formal description of our algorithm lies in Section 3.3
(Algorithm 2). Before presenting our algorithm, in Section 3.1) we present the notion of Implicit Description
Polytopes for Congestion Games and in Section 3.2 the notion of Barycentric Spanners [10].

7



3.1 Implicit Description and Strategy Sampling

The set of resources can be numbered such that E = {1, . . . ,m}. The latter allows for the strategy space
Si to be embedded in the vertices of the m dimensional hypercube. Indeed any pi ∈ Si can be described,
with a slight abuse of notation, by the vertex pi ∈ {0, 1}m where pie = 1 if and only if e ∈ pi. The following
definition formalizes this embedding.

Definition 6 (Implicit description polytope). For any element in Si, let pi ∈ {0, 1}m denote its encoding as
a vertex in the hypercube. The implicit description polytope Xi is given by the following convex hull

Xi := conv ({pi ∈ {0, 1}m, pi ∈ Si}) ,

Xi is a closed convex polytope so there exists Ai ∈ R
ri×m and di ∈ R

ri , for some ri ∈ N, such that

Xi = {x ∈ R
m, Aix ≤ di}

The polytope is therefore defined by the pair (Ai, di) and its size is given by ri and m.

This implicit description polytope is of interest because the strategy space Si corresponds to its extreme
points. Moreover, the set of distribution over the strategy space ∆(Si) is also captured by the polytope as
shown by the following definition.

Definition 7 (Marginalization). For any πi ∈ ∆(Si) we can associate a point xπi ∈ Xi defined as

xπi =
∑

pi∈Si

Pr
u∼πi

[u = pi] pi.

The reverse correspondence of obtaining a distribution πi ∈ ∆(Si) from a point xi ∈ Xi can also established
thanks to a result of Caratheodory [19].

Definition 8 (Caratheodory decomposition). Let xi ∈ Xi. By Caratheodory’s theorem, there exists m + 1
strategies v1i , . . . v

m+1
i and scalars λ1, . . . , λm+1 such that

xi =

m+1
∑

j=1

λjv
j
i (CD)

with λj ≥ 0 and
∑

j λj = 1. The set Ci =
{

(v1i , λ1), . . . , (v
m+1
i , λm+1)

}

is called a Caratheodory decomposition
of x.

With the result above, any point in Xi can be associated to a distribution that can be sampled easily.

3.2 Barycentric Spanners and Bounded Away Polytopes

This section introduces the important concept of barycentric spanners [10]. We will leverage barycentric
spanners to ensure sufficient exploration of the resources set and hence guarantee low variance of the cost
estimators.

Definition 9 (ϑ-spanners). A subset of independent vectors {b1, . . . , bs} ⊆ Xi, with s ≤ m, is said to be
ϑ-spanner of Xi, with ϑ ≥ 1, if, for all x ∈ Xi, there exists α ∈ R

s such that

x =

s
∑

k=1

αkbk and α2
i ≤ ϑ2, for all k ∈ [s].

Theorem 5 (Existence of spanners ([10], Proposition 2.2)). Any compact set Xi ⊂ R
m admits an O(1)-

spanner.

We adopt barycentric spanners as a key ingredient in our algorithm. Since barycentric spanners essentially
form a kind of basis of the polytope Xi, we can introduce the basis polytope Di in the following defintion.

8



Definition 10 (Basis polytope). Let Bi be the matrix whose columns are ϑ-barycentric spanners b1, . . . , bs
of Xi. The polytope defined as

Di = {α ∈ [−ϑ, ϑ]s, Biα ∈ Xi}
is referred to as the basis polytope.

It is in this polytope that we can achieve fine control of norms necessary for our proofs, for this reason
agents will operate in their respective basis polytopes. Moreover to ensure sufficient exploration, the bound-
aries of the polytope need to be avoided. More precisely, we introduce the notion of µ-Bounded-Away Basis
Polytope that will be central for our proposed algorithm.

Definition 11. Let µ > 0 be an exploration parameter. The µ-Bounded-Away basis Polytope, denoted as
Dµ

i , is defined as

Dµ
i , (1− µ)Di +

µ

s
1. (1)

We remark that the µ-Bounded-Away PolytopeDµ
i is always non empty as it contains 1

s1, moreover,Dµ
i ⊆ Di.

A simplified version of this idea has been shown successful for the semi-bandit feedback model [68] and it
appeared in [23] that used it in the context of online predictions with experts advice.

Equation (1) shows that any point αi ∈ Di admits a decomposition where 1
s1 appears with coefficient

µ. Mapping back to the implicit description polytope, this implies that the point xi = Biαi admits a
decomposition that assigns a weight µ > 0 to bi = 1

|Bi|

∑

b∈Bi
b, which can be understood as the uniform

distribution over the spanners. In fact, there is a tractable way of obtaining this decomposition as evidenced
by the following definition.

Definition 12 (Shifted Caratheodory decomposition). Given a barycentric spanner Bi and the respective
µ-bounded away basis polytope Di, for any α ∈ Dµ

i , with α = (1 − µ)z + µ
s1 for some z ∈ Di, the shifted

Caratheodory decomposition of x = Biα is given by

x = (1− µ)





∑

(p,λp)∈Ci

λp · p



+
µ

|Bi|
∑

b∈Bi

bi

where Ci is the Caratheodory decomposition of Biz ∈ Xi.

In Algorithm 1 we present how, for any α ∈ Dµ
i , a point x = Biα ∈ Xi can be decomposed to a probability

distribution πx ∈ ∆(Si).

Algorithm 1 CaratheodoryDistribution

1: Input: x ∈ Xi, exploration parameter µ > 0, spanner Bi = {b1 . . . , bs}.
2: Consider the shifted decomposition of x (see Definition 12) with b̄i =

1
|Bi|

∑

b∈Bi
b, i.e.

x = (1 − µ)





∑

(p,λp)∈Ci

λp · p



+
µ

|Bi|
∑

b∈Bi

bi

where Ci = {(λ1, v
1
i ), . . . , (λm+1, v

m+1
i )} is the Caratheodory decomposition of 1

1−µ

(

x− µ
|Bi|

∑

b∈Bi
bi

)

3: Output πx ∈ ∆(Si) with supp(π) =
{

v1i . . . v
m+1
i

}

∪ Bi such that

• Pru∼πx [u = vk] = (1− µ)λk for all k ∈ [m+ 1]

• Pru∼πx [u = bs] = µ/|Bi| for all bs ∈ Bi

9



Algorithm 2 Bandit Gradient Descent with Caratheodory Exploration and Bounded Away polytopes

1: Agent i computes a O(1)-barycentric spanner (see Definition 9) B = {b1, . . . , bs}.
2: Agent i sets Bi ∈ R

m×s to be the matrix with columns {b1, . . . , bs}.
3: Agent i selects an arbitrary α1

i ∈ Dµ1

i .
4: for each round t = 1, . . . , T do
5: Define xt

i = Biα
t
i.

6: Agent i samples pti ∼ πt
i where πt

i = CaratheodoryDistribution(xt
i;µt,B) (Algorithm 1).

7: Agent i suffers cost,
lti :=

〈

ct, pti
〉

8: Agent i sets ĉt ← lti ·M+
i,tp

t
i where Mi,t = Ev∼πt

i

[

vv⊤
]

.

9: Agent i updates αt+1
i = ΠD

µt+1

i

(

αt
i − γtB

⊤
i ĉt
)

10: end for

3.3 Bandit Gradient Descent with Caratheodory Exploration

In this section we present our algorithm, called Bandit Gradient Descent with Caratheodory Exploration
(BGD− CE) described in Algorithm 2.
Algorithm 2 and is based on Projected Online Gradient Descent [79] but it includes two important variations
leveraging the technical tools introduced in the previous sections.

Resources sampling In Step 6 of Algorithm 2 we need to sample from a distribution over Si. As this set can
be exponentially large, this sampling procedure might have complexity exponential in m. To avoid such a
computational complexity, we will use a reparametrization of the problem to ensure that all the distributions
πt
i ’s generated by the algorithm have sparse support.

Bounded variance estimator Since we work under bandit feedback, we can not directly observe all the entries of
the cost vector. To circumvent this challenge, we adopt the standard estimator for online linear optimization
with bandit feedback proposed in [31] which is ĉt ← lti ·M+

i,tp
t
i where Mi,t = Eu∼πt

i

[

uu⊤
]

. The bounds on the
variance of this estimator depends on the inverse of the smallest nonzero eigenvalue of Mi,t (see Lemma 9)
but unfortunately this could be arbitrary small for points close to the boundaries of the polytope Xi. For
this reason, in Step 8 of Algorithm 2 we project on the set shrunk down polytope, Dµ

i , that ensures we are
µ away from the boundary. Thanks to this, we can prove the following result concerning the cost estimator.

Lemma 1. The estimator ĉt = lti ·M+
i,tp

t
i satisfies

1. E [〈ĉt, x〉] = 〈ct, x〉 for x ∈ Xi (Orthogonal Bias).

2. ‖B⊤
i ĉt‖2 ≤ ϑm5/2

µt
cmax. (Boundness).

3. E

[

∥

∥B⊤
i ĉt
∥

∥

2

2

]

≤ nm4c2max

µt
(Second Moment)

Using Lemma 1 we are able to establish both the no-regret property of Algorithm 2 as well as its conver-
gence properties of Nash Equilibrium in case Algorithm 2 is adopted by all agents. In Theorem 6 we formally
stated and establish the no-regret property of Algorithm 2.

Theorem 6 (No-Regret). Let δ ∈ (0, 1). If agent i ∈ [n] generates its strategies p1:T using Algorithm 2 with

step sizes γt =
√

cmaxµt

ϑn3m6t and biases µt = min
{

n1/5

m7/5t1/5c
1/5
max

, 0.5
}

, then, for any adversarial adaptive sequence

c1:T ,

R
(

p1:Ti , c1:T
)

≤ Õ
(

m5.5c2T 4/5

√

log
1

δ

)

with probability 1− δ.

In Theorem 7 we establish the convergence properties of Algorithm 2 to Nash Equilibrium.

10



Theorem 7 (Convergence to Nash). Let all the agents adopt Algorithm 2 with step sizes γt =
√

cmaxµt

n3m6t and

biases µt =
n1/5

m7/5t1/5c
1/5
max

. We denote by π1, . . . , πT the sequence of joint strategy profiles produced. Then, for

T ≥ Θ(m13m13.5/ǫ5),

1

T
E

[

T
∑

t=1

max
i∈[n]

[

ci(π
t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]

]

≤ ǫ.

We remark that the complexity of Algorithm 2 is polynomial with respect to the size of implicit polytope
Xi. However the for general congestion games the size of Xi can be exponential on m. Moreover constructing
an O(1)-barycentric spanner for general congestion games also requires exponential time in m [10] when the
size of the polytope is exponential. However for the important special case of network games over DAGs we
present how Algorithm 2 can be implemented in polynomial time with respect to m (see Section 4.2). To
establish the latter we present a novel algorithm for constructing 1-barycentric spanners for network games
for the special case of DAGs that runs in polynomial time (see Algorithm 1). Finally in Section 5, we present
the proof sketches of both Theorem 6 and Theorem 7.

4 Implementing Algorithm 2 in Polynomial-Time for DAGs

In this section we present how Algorithm 2 can be implemented in polynomial time for the special case
of DAGs. The latter involves two key steps. The first one consists in computing barycentric spanners in
polymomial while the second in efficiently computing a Caratheorody Decomposition. We remark that none
of the above steps can be done in polynomial time for general congesiton games. To tackle the first challenge
in Algorithm 4 we present a novel and efficient procedure for spanner construction which also consists the
main technical contribution of this section. To tackle the second challenge, we use the approach introduced
in the previous work of [68]. Overall, we present the computationally efficient version of Algorithm 2 for the
case of Network Congestion Games over DAGs in Algorithm 3.

4.1 Complexity for general congestion games

For ϑ = O(1) but with ϑ > 1, [10] shows that it is possible to compute a ϑ-spanner for any compact set with
a polynomial number of calls to a linear minimization oracle. The time complexity of this oracle depends
polynomially on ri and m where ri is the number of rows in (Ai, di), the implicit description of Xi. The
updates of Algorithm 2 further require a Caratheodory decomposition for sampling at step 3, the inversion
of a m×m matrix Mi,t and finally a projection onto Xi. Overall the complexity of a single update is therefore
poly(ri,m). For general congestion games, it can be the case that ri is exponential in m. For the special case
of network games however, Xi corresponds to the flow polytope for which ri ≤ m. We discuss this special
case in the next section.

4.2 Efficient implementation of Algorithm 2 for DAGs

As aforementioned, an efficient implementation is possible if the set of resources correspond to the edges of
a DAG. First, recall that the implicit description polytope Xi admits a polynomial description. Indeed, in
network congestion games X has the following simple form.

Definition 13 (Flow polytope). The implicit description polytope of a Network Congestion Game over a
directed acyclic graph G(V,E) with start and target node si, ti ∈ V is given by

Xi ,

{

x ∈ {0, 1}m :
∑

e∈Out(si)

xe = 1

∑

e∈In(v)

xe =
∑

e∈Out(v)

xe ∀v ∈ V \ {si, ti}

∑

e∈In(ti)

xe = 1

}

11
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Figure 1: Construction of a 1-spanner for DAGs. We illustrate Algorithm 4 on a simple graph. We can select the
three red edges as the non redundant edges. We cover these using 3 paths that will constitute the basis. For edge
s → b, we select s → b → d → e → g → t. For the edge s → c, we first check if is reachable from edge s → b, we notice
it is not. We then find a path starting from s. In this case, we select s → c → d → e → g → t. For edge e → f we
check if is reachable from the last covered edge (in topological order), we notice it is reachable from edge s → c so we
select s → c → d → e → f → t. The key idea we use to construct a 1-spanner is to ensure that when we cover edges,
we first try to reach them with the previously covered edges going in reverse topological order. This prefix property
ensures the 1-spanner property.

Notice that the number of constraints is simply |V |. Therefore, a DAG admits an implicit description
with ri = |V | < m. Moreover, we have the following important characterization of the extreme points.

Lemma 2. [68, Lemma 11] The extreme points of the (si, ti)-path polytope Xi correspond to (si, ti)-paths of
G(V,E) and vice versa.

Therefore, despite the fact that there potentially exponentially many extreme points of Xi, the set Xi is
described concisely by |V | constraints. The first important consequence of this result is that invoking the
following theorem (Theorem 8) we can ensure that Step 5 in Algorithm 2 runs in polynomial time.

Theorem 8. [47] Let x ∈ Xi = {u ∈ [0, 1]m, Aiu ≤ di}, with Ai ∈ R
ri×m and di ∈ R

m. Then a Caratheodory
decomposition can be computed in polymomial time with respect to ri and m.

Given a shortest path algorithm, this can be done using [68, Algorithm 1]. Moreover, also the projection in
Step 8 of Algorithm 2 can be computed up to arbitrary accuracy in polynomial time given that X can be
represented via |V | affine constraints. The second computational bottleneck in the general case is the spanner
computation. However, for the special case of DAGs, we present next an algorithm that construct exact 1-
spanner which has better computational complexity compared to [10].The improvement is possible because
the approach by [10] does not exploit the specific structure of DAGs. We propose, instead, an algorithm that
stays in the natural parametrization of the problem and outputs a 1-spanner. The construction is detailed
in Algorithm 4 and rests on a clever use of prefix paths. All in all, we have the next formal result.

Theorem 9. Given a Directed Acyclic Graph G = (V,E) with source si ∈ V and sink ti ∈ V , there exists a
polynomial time algorithm (i.e. Algorithm 4) computing an exact 1-spanner for Xi.

We give a constructive proof of Theorem 9 in Section 4.3. Overall, for the case of DAG we have the follow-
ing algorithm that runs in polynomial time. The difference compared to the general case (i.e. Algorithm 2)
is that in Step 2 the spanner is computed efficiently invoking Algorithm 4.

4.3 Constructing the spanner of DAGs

In this section we present Algorithm 4 that computes an 1-barycentric spanner for the special case of DAGs.
To simplify notation for a given agent i ∈ [n], we denote by Si ⊂ R

m, the strategy space corresponding to
set of all paths connecting si to ti. We can restrict our attention to the subgraph Gi = (Vi, Ei) where Vi and
Ei corresponds to the nodes and edges appearing in at least one path in Si.

4.3.1 Blue edges

The convex hull of the strategy space Si forms the path polytope Xi = conv(Si). This polytope is included
in a subspace of Rm of dimension mi − ni + 2, where ni = |Vi|. Indeed, for each node v ∈ V \{si, ti}, we can
pick one outgoing edge e∗v ∈ out(v) such that for any x ∈ Pi, we have

xe∗v =
∑

e∈in(v)

xe −
∑

e∈out(v),e6=e∗v

xe (2)
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Algorithm 3 Bandit Gradient Descent with Caratheodory Exploration and Bounded Away polytopes
(Agent’s i perspective) for DAGs

1: Input: Step size sequence (γt)t, bias coefficients (µt)t, a constant ϑ.
2: Agent i computes a 1-barycentric spanner B = {b1, . . . , bs} with Algorithm 4.
3: Agent i selects an arbitrary x1

i ∈ Xi.
4: for each round t = 1, . . . , T do
5: Agent i sets xt

i = Biα
t
i.

6: Agent i samples pti ∼ πt
i where πt

i = CaratheodoryDistribution(xt
i;µt,B) (Algorithm 1).

7: Agent i suffers cost,
lti :=

〈

ct, pti
〉

8: Agent i sets ĉt ← lti ·M+
i,tp

t
i where Mi,t = Ev∼πt

i

[

vv⊤
]

.

9: Agent i updates αt+1
i as,

αt+1
i = Π

D
µt+1

i

(

αt
i − γtB

T
i ĉ

t
)

10: end for

for all v ∈ V \{si, ti}. These equations come from reasoning about flow preservation. Consequently, Xi

belongs to the intersection of ni − 2 hyperplanes, which is of dimension at most mi− ni +2. In other words,
although the strategy space is of dimension mi, the degrees of freedom are restricted by the graph structure
as some coordinates are redundant and predictable from other coordinates (see (2)). We single out these
redundant edges in the following definition.

Definition 14. For all v ∈ Vi\{si, ti} (i.e all nodes except the blue and termination nodes), we arbitrarily
pick one edge denoted e∗v ∈ out(v) that will be referred to as a blue edge.

The remaining edges will be referred to as a red edges. These red edges will aid us in constructing a
1-spanner. Indeed, from equation (2), we can see that the coordinates corresponding to blue edges can be
determined by the values at the red edges.

4.3.2 Basis construction

In order to construct the basis, we first need to perform a topological ordering of the nodes. A topological
ordering of the nodes of a graph is a total ordering of the nodes such that for every directed edge with source
vertex u ∈ V and destination vertex v ∈ V , the node u comes before v in the ordering. We will use the <
symbol to denote such an ordering.

Let v1 = si, v2, . . . , vn = ti be a topological ordering of the nodes of Gi. This induces a topological
ordering on the edges (sorted according to their origin node). We will construct a 1-spanner for Xi following
this ordering. The following simple lemma about blue paths will be essential.

Definition 15 (Blue path). A path in Gi is said to be a blue path if consists entirely of blue edges.

Lemma 3 (Blue path lemma). For any node vk ∈ Vi\{si}, there exists a blue path connecting vk to vn = ti.

Proof. We proceed by induction on the topological ordering. For vn−1, we pick a blue outgoing edge. By
definition of a topological ordering, the chosen edge will necessarily lead to vn = ti.

Now let k ∈ [2, n − 2] and assume that the lemma holds for all for l > k. We consider the node vk and
pick an outgoing blue edge. It will lead to a node vl with l > k. By induction hypothesis, there exists a path
connecting vl to ti that only consists of blue edges. Concatenating the picked outgoing edge with this path
yields the result for vk so the lemma holds for k.

We now have all the tools needed for the construction of the basis b1, . . . , bs where s = mi − ni + 2 is the
total number of red edges. We provide the procedure in Algorithm 4.

Proposition 1 (Prefix property). Consider a covering basis generated by Algorithm 4. Let ek < el be two
red edges. If ek and el are connected in G(Vi, Ei), then Prefix(k) 6= Prefix(l) where Prefix is the value set
at lines 8 and 13 of Algorithm 4.
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Algorithm 4 Edge covering basis

1: Input: Red edges e1, . . . , es in topological order.

2: Basis← ∅

3: for h = 1 to s do
4: Let peh→ti be a blue path connecting dest(eh) to ti (given by Lemma 3).
5: for k = h− 1 to 1 do
6: if there exists a path pk→h joining dest(ek) to source(eh) then
7: Set bh ← Truncate(bk, ek) | pk→h | peh→ti

8: Set Prefix(h)← k
9: break

10: end if
11: end for
12: if there is no preceding red edge connected to eh then
13: Let psi→eh be a blue path connecting si to dest(eh).
14: Set bh ← psi→eh | peh→ti

15: Set Prefix(h)← ⊥
16: end if
17: Basis← Basis ∪ {bh}
18: end for
19: return Basis

Proof. Suppose i = Prefix(k) = Prefix(l). Then by construction ei < ek < el. On the other hand, since
the prefixes are set in reverse topological order and ek and el are connected, we must have Prefix(l) ≥ k. A
contradiction.

This prefix property is the central ingredient needed to prove that the generated basis is a 1-barycentric
spanner. We show this formally in the following theorem.

Theorem 10 (1-Spanner). Let b1, . . . , bs be the covering basis generated by Algorithm (4). For any x ∈ Xi,
there exists α ∈ R

s such that

x =
s
∑

h=1

αhbi and α2
h ≤ 1

Proof. It suffices to prove the result for x ∈ Si, the extreme points of Xi. Let rx = Red(x) ∈ R
s where Red is

the linear operator selecting the coordinates corresponding to the red edges. Correspondingly, let us define
r1, . . . , rs such that

rh = Red(bh)

for h = 1, . . . , s. Observe that the canonical basis vectors v1, . . . , vs of Rs can be expressed as

vh = rh − rPrefix(h)

for h = 1, . . . , s, and taking r⊥ = 0s. Consequently,

rx =
∑

h∈rx

vh =
∑

h∈rx

(

rh − rPrefix(h)
)

=

s
∑

h=1

αhrh

for some α ∈ R
s. Now it remains to prove that |αh| ≤ 1. We know, by the prefix property 1, that the

mapping Prefix : {h : h ∈ rx} → [s− 1] ∪ {⊥} is injective since the edges in {h : h ∈ rx} are connected. In
other words, there are no duplicates in {Prefix(h), h ∈ rx}. We express rx in the following convenient form.

rx =
∑

h∈rx

rh −
∑

h∈{Prefix(h),h∈rx}

rh

With this, we can reason on a case by case basis for each coordinate as follows. Let h ∈ [s]. We first consider
the case where h ∈ rx. Since there are no duplicates, if we also have that h ∈ {Prefix(h), h ∈ rx}, then
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αh = 0 otherwise αh = 1. Similarly, if h /∈ rx, then we either have h ∈ {Prefix(h), h ∈ rx} in which case
αh = −1 or if not αh = 0. We thus find that α2

h ≤ 1. Now to conclude, we know from (2) that there exists a
linear operator Fill: Rs → R

m that fills in the values of the blue edges from the coordinate values of the red
edges, hence x = Fill (Red (x)), which yields,

x = Fill

[

s
∑

h=1

αhrh

]

=

s
∑

h=1

αhFill [rh] =

s
∑

h=1

αhbh.

5 Proof sketches

In this section we provide the basic steps for establishing Theorem 6 and Theorem 7.

5.1 Regret analysis

The main observation needed to prove Theorem 1 is to notice that at Step 8 of Algorithm 2 the sequence
α1:T
i is obtained performing a close variant of Online Gradient Descent (OGD) on the sequence of gradient

estimates B⊤ĉ1:T . The subtle difference here is that the projection is done on Dµt

i , a time varying polytope.
Luckily, a small variation in the analysis allows us to establish a guarantee similar to that of online gradient
descent with an added µt dependent term.

We first slightly expand the definition of regret to include a fixed comparator u ∈ Xi. We define the regret
with respect to a comparator as follows

R
(

p1:Ti , c1:T ;u
)

:=

T
∑

t=1

〈

ct, pti − u
〉

.

It is easy to see that the regret defined earlier is obtained by taking the comparator u⋆ = minu∈Si

∑T
t=1 〈ct, u〉,

which is the best fixed action in hindsight. With this extended notion of regret, we can prove the following
result on the approximate online gradient descent scheme performed by our algorithm.

Lemma 4 (Moving OGD). Let x1:T
i and ĉ1:Ti be the sequences produced by Algorithm 2,

R
(

x1:T
i , ĉ1:T ;u

)

≤ 2m

γT
+ 2

T
∑

t=1

γt‖ĉt‖22 + 2mcmax

T
∑

t=1

µt. (3)

Now for us to use this result to control the regret of the algorithm, we have to pay attention to the
following two points. First, the algorithm is not playing x1:T

i but rather the samples p1:Ti and, second,
it is incurring costs with respect to c1:T and not ĉ1:T . The regret of the algorithm is therefore measured
byR

(

p1:Ti , c1:T ;u
)

. We have to relate this quantity to the regret of bounded in Lemma 4. This can be done
in two steps. The first is going from the samples p1:Ti to the marginalizations x1:T

i .

Lemma 5 (First concentration lemma). Let p1i , . . . , p
T
i ∈ Pi be the sequences of strategies produced by

Algorithm 2 for the sequence of costs c1, . . . , cT . We have with probability 1− δ,

R
(

p1:Ti , c1:T ;u
)

≤ R
(

x1:T
i , c1:T ;u

)

+ cmaxm

√

T log

(

1

δ

)

. (4)

All that remains now is swapping the cost vectors from the true c1:T to the estimated ĉ1:T , which can be
achieved by invoking a second concentration argument.

Lemma 6 (Second concentration lemma). Let ĉ1, . . . , ĉT the sequence produced in Step 7 of Algorithm 2 run
on the sequence of costs c1, . . . , cT . Then with probability 1− δ,

R
(

x1:T
i , c1:T ;u

)

≤ R
(

x1:T
i , ĉ1:T ;u

)

+m3cmaxϑ
3/2

√

√

√

√

T
∑

t=1

1

µ2
t

log(1/δ). (5)
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Now to prove Theorem 6, it suffices to simply plug (5) inside (4) to upper bound the regret of the algorithm
with the regret of online gradient descent. Then, invoking Lemma 4 which controls the regret of the latter,
we can obtain bound on the regret of the algorithm with respect to a comparator u ∈ Xi. To conclude and
obtain 6, a simple union bound over all u ∈ Xi yields the result. We detail the proof in Appendix B.

5.2 Convergence to Nash (Proof of Theorem 7)

In this section, we prove Theorem 7. We will be using the fact that congestion games always admit a potential
function [65] capturing the change in cost when a sole agent alters its strategy. The potential function of
congestion games is given by the following function.

Theorem 11. The potential function Φ : S → R+ given by Φ(p) =
∑

e

∑ℓe(p)
i=1 ce(i), has the property that

Ci(p
′
i, p−i)− Ci(pi, p−i) = Φ(p′i, p−i)− Φ(pi, p−i).

The key observation here is that the potential function is a shared function that measures the change in
cost when any agent deviates from a joint profile. This same function also captures the change in expected
cost once it is viewed as a function over the polytope X , X1 × · · · × Xn.

Definition 16. The function Φ : X → R+, defined as Φ(x) =
∑

S⊆[n]

∏

j∈S xje

∏

j /∈S(1 − xje)
∑|S|

ℓ=0 ce(ℓ)
verifies

Ci(πi, π−i)− Ci(π
′
i, π−i) = Φ(xi, x−i)− Φ(x′

i, x−i)

for any π ∈ ∆(S1) × · · · × ∆(Sn), with marginilization x ∈ X , and any i ∈ [n], where π′
i ∈ ∆(Si), with

marginalization x′
i.

The function Φ is not convex over X but it is smooth making it friendly to gradient based optimization.
We can show that the function Φ is differentiable and its gradient ∇Φ is Lipschitz continuous with constant
(2n2
√
mcmax). However, since we operate in the basis polytope D, we are interested in the function Φ̃ defined

as
Φ̃ : α 7→ Φ(Bα),

where B is the block diagonal matrix with B1, . . . , Bn as its diagonal elements. This function inherits all
the nice properties of Φ up to some additional factors. Indeed with a simple computation, we can show the
following result.

Proposition 2. The function Φ̃ is 1
λ -smooth with λ = (2n2m7/2cmax)

−1.

Stationary points of Φ correspond to Nash equilibria [65], thus making the function Φ the essential tool
used for proving our result. Indeed in the sequel we technically prove convergence to stationary points of the
potential function. Stationary points are defined as follows.

Definition 17 (Stationarity). A point α ∈ Dµ is called an (ǫ, µ)-stationary point if

Gµ(α) ,

∥

∥

∥

∥

α−ΠDµ

[

α− λ

2
∇Φ̃(α)

]∥

∥

∥

∥

2

≤ ǫ.

Given an (ǫ, µ)-stationary point α, then any mixed strategy with marginalization x = Bα is an approxi-
mate mixed Nash equilibrium. We formalize this in the following result.

Proposition 3 (From Stationarity to Nash). Let π ∈ ∆(S1)×· · ·×∆(Sn). Let x ∈ X be the marginalization of
π. If x = Bα, with α ∈ D an (ǫ, µ)-stationary point, then π is a 4n2.5m4cmax (ǫ+ µ)-mixed Nash equilibrium.

We have thus reduced the problem of finding mixed nash equilibria to that of finding stationary points of
Φ̃. We will find such stationary points by studying the joint vector of the iterates. We initiate our study by
recalling the notation of the joint strategies of the players. For each t ∈ [T ], we collect each player’s iterates
in one vector in D defined as

αt ,
[

αt
1, . . . , α

t
n

]

It is easy to see that when all players play according to Algorithm 2, the produced sequence of vectors
α1, . . . , αT verifies

αt+1 = ΠDµt+1

[

αt − γt · ∇t

]

(6)
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where ∇t ,
[

B⊤
1 ĉt1, . . . , B

⊤
n ĉtn

]

. It turns out that that ∇t is an estimator for ∇Φ̃ as shown by the following
lemma.

Lemma 7 (Estimator property). Let t ∈ [T ] and Ft be the sigma-field generated by α1, . . . , αt. It holds that

1. Et[∇t] = ∇Φ̃(αt),

2. Et[‖∇t‖22] ≤
nm4c2max

µt

where Et [·] , E [·|Ft].

Our goal will be to show that the sequence α1, . . . , αT visits a point with a small stationarity gap. To
prove this, the time varying Moreau envelope M t

λΦ̃
of Φ̃, defined as

M t
λΦ̃

(α) , min
y∈Dµt

{

Φ̃(y) +
1

λ
‖α− y‖22

}

,

will play a central role as is shown by the following lemma.

Lemma 8 (Gap control). Let Gt(α) := ‖ΠDµt

[

α− λ
2∇Φ̃(α)

]

−x‖2 denote the µt-stationarity gap. We have

that for any α ∈ Dµt ,
Gt(α) ≤ λ‖∇M t

λΦ̃
(α)‖2

Controlling the stationarity gap of an iterate therefore boils down to bounding the norm of the gradient of
M t

λΦ̃
along the sequence. By observing that the update rule (6) closely corresponds to performing stochastic

gradient descent step on M t
λΦ̃

, we are able to show the following result.

Theorem 12 (Stochastic gradient descent). Consider the sequence α1, . . . , αT produced by Equation 6. Then,

1

T

T
∑

t=1

E
[

‖∇M t
λΦ̃

(αt)‖2
]

≤ 2n1.5

√

√

√

√

2m1.5cmax

γTT
+

n3m7.5

γTT

T
∑

t=1

γ2
t

µt

In order to obtain Theorem 7, it suffices to combine the stochastic gradient descent result in Theorem
12 with Lemma 8 and observe that the sequence of iterates visits a point with a small stationarity gap.
Combining this with proposition 3 which relates stationarity to Nash equilibria yields the result. We provide
a complete proof in section C.2.

6 Conclusion

This work introduces an online learning algorithm for general congestion games under the bandit feedback
model. Our algorithm ensures no-regret for any agent adopting it and, when embraced collectively by all
agents in congestion games, it drives the game dynamics towards an ǫ-approximate Nash Equilibrium within
poly(n,m, 1/ǫ) rounds. Our results resolves an open query from [29] while extending the recent results of
[68] into the bandit framework. For the important special case of Network Congestion Games on DAGs, we
provide an implementation of our algorithm that operates in polynomial time. The design of polynomial-time
bandit no-regret algorithms, with comparable convergence guarantees for a broader class of congestion games,
remains an intriguing future research direction.
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Biró, Shuchi Chawla, and Federico Echenique. ACM, 2021, pp. 679–680.

[57] Pieter Kleer and Guido Schäfer. “Computation and efficiency of potential function minimizers of com-
binatorial congestion games”. In: Math. Program. 190.1 (2021), pp. 523–560.

[58] Elias Koutsoupias and Christos H. Papadimitriou. “Worst-case Equilibria”. In: STACS. 1999, pp. 404–
413.

[59] Chung-Wei Lee et al. “Bias no more: high-probability data-dependent regret bounds for adversarial ban-
dits and MDPs”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates,
Inc., 2020, pp. 15522–15533.

[60] Stefanos Leonardos et al. “Global Convergence of Multi-Agent Policy Gradient in Markov Potential
Games”. In: International Conference on Learning Representations. 2022.

[61] Marios Mavronicolas and Paul G. Spirakis. “The price of selfish routing”. In: Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece. Ed. by
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis. ACM, 2001, pp. 510–519.

[62] H Brendan McMahan and Avrim Blum. “Online geometric optimization in the bandit setting against an
adaptive adversary”. In: Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004,
Banff, Canada, July 1-4, 2004. Proceedings 17. Springer. 2004, pp. 109–123.

[63] Panayotis Mertikopoulos and Zhengyuan Zhou. “Learning in games with continuous action sets and
unknown payoff functions”. In: Math. Program. 173.1-2 (2019), pp. 465–507.

[64] D. Monderer and L. S. Shapley. “Potential Games”. In: Games and Economic Behavior (1996), pp. 124–
143.

[65] Dov Monderer and Lloyd S Shapley. “Potential games”. In: Games and economic behavior 14.1 (1996),
pp. 124–143.
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Appendix

A Properties of the estimator ĉ
t

The central difficulty of bandit feedback lies in the construction of a low variance estimator for the unobserved
cost vector ct at each round t ∈ [T ]. In what follows we prove two results on ĉt, the estimator constructed
in step 7 of Algorithm 2 that will be instrumental to both the regret analysis and the convergence to
equilibrium.

First we show that the estimator is bounded almost surely.

Lemma 9 (Bounded estimator). For any t ∈ [T ], the estimator ĉt = lti ·M+
i,tp

t
i is almost surely bounded and

‖B⊤
i ĉt‖2 ≤ ϑ

m5/2

µt
cmax.

Proof. Let i ∈ [n], t ∈ [T ]. Recall that Bi ∈ R
m×s is the matrix whose columns are the s elements of

the barycentric spanner. Let us write Mi,t in a more convenient form. Recall that πt
i is the Caratheodory

distribution computed by Algorithm 1. It then follows (from step 3 in Algorithm 1) that

πt
i = (1− µt)τ

t
i + µtνi

where νi is the uniform distribution over the barycentric spanners and τi is the distribution supported on the
Caratheodory decomposition. We can then express Mi,t as follows.

Mi,t = Eu∼πt
i

[

uu⊤
]

= (1− µt)Eu∼τ t
i

[

uu⊤
]

+ µtEu∼νi

[

uu⊤
]

= (1− µt)Bi

(

Eu∼τ t
i

[

αuα
⊤
u

]

)

B⊤
i +

µt

s
Bi

(

s
∑

k=1

eke
⊤
k

)

B⊤
i

= BiNi,tB
⊤
i

where we defined Ni,t := (1 − µt)Eu∼τ t
i

[

αuα
⊤
u

]

+ µt

s Is. Notice here that it is easy to see that Ni,t � µt

s Is
which implies that

N+
i,t �

s

µt
Is. (7)

Now, since Bi has independent columns, we have that

M+
i,t =

(

B⊤
)+

N+
i,tB

+ (8)

Moreover, we know there exists αi,t ∈ R
s such that pti = Bαi,t. With these in hand, let us analyze the

estimator ĉt. We have that
ĉt =

〈

ct, pti
〉

M+
i,tp

t
i =

〈

ct, pti
〉

M+
i,tBαi,t

By plugging in (8), we find that
B⊤

i ĉt =
〈

ct, pti
〉

N+
i,tαi,t (9)

Consequently,
∥

∥B⊤
i ĉt
∥

∥ ≤ mcmaxϑ
s3/2

µt

which allows us to conclude by using that using s ≤ m.

Lemma 10 (Orthogonal Bias). For any t ∈ [T ], for any x ∈ Xi,

〈ct − Eπt
i
[ĉt], x〉 = 0.

23



Proof. Let M = Eπt
i

[

pp⊤
]

. Recall that ĉt = M+pti 〈pti, ct〉. We have that

Eπt
i
[ĉt] = M+

i,tMi,tc
t =

(

B⊤
i

)+
B⊤

i ct.

where the second equality is obtained using (8). It follows that for any x ∈ Xi, which we know can be written
x = Biαx, we have that

〈

M+
i,tMi,tc

t, x
〉

=
〈

(

B⊤
i

)+
B⊤

i ct, x
〉

=
〈

c, BiB
+
i x
〉

=
〈

c, BiB
+
i Biαx

〉

= 〈c, x〉

where the last line follows from the fact that B+
i is a right inverse when Bi has independent columns, which

is true by construction.

B Regret analysis: Proof of Theorem 6

In this section, we provide a complete proof of the regret bound. We first prove the two lemmas that relate
the regret of the algorithm to the quantity bounded by the moving online gradient descent lemma. We then
prove the online gradient descent lemma and conclude the section with a complete proof of Theorem 6.

Lemma 5 (First concentration lemma). Let p1i , . . . , p
T
i ∈ Pi be the sequences of strategies produced by

Algorithm 2 for the sequence of costs c1, . . . , cT . We have with probability 1− δ,

R
(

p1:Ti , c1:T ;u
)

≤ R
(

x1:T
i , c1:T ;u

)

+ cmaxm

√

T log

(

1

δ

)

. (4)

Proof. The result is obtained by a straightforward application of Azuma-Hoeffding’s inequality. Indeed,

Et

[〈

ct, pti
〉

−
〈

ct, xt
i

〉]

= 0

and | 〈ct, pti〉 − 〈ct, xt
i〉 | ≤ mcmax almost surely. The sequence (〈ct, pti〉 − 〈ct, xt

i〉)t is a sequence of bounded
martingale increments. We can thus apply Azuma-Hoeffding’s inequality.

The following second lemma swaps out the real cost vectors with their estimates.

Lemma 6 (Second concentration lemma). Let ĉ1, . . . , ĉT the sequence produced in Step 7 of Algorithm 2 run
on the sequence of costs c1, . . . , cT . Then with probability 1− δ,

R
(

x1:T
i , c1:T ;u

)

≤ R
(

x1:T
i , ĉ1:T ;u

)

+m3cmaxϑ
3/2

√

√

√

√

T
∑

t=1

1

µ2
t

log(1/δ). (5)

Proof. This result is again a straightforward application of Azuma-Hoeffding’s concentration inequality. In-
deed, by the Orthogonal Bias Lemma 10, we have that

Et

[〈

ct − ĉt, xt
i − u

〉]

= 0

It remains to show that | 〈ct − ĉt, xt
i − u〉 | is bounded almost surely. Since Bi is a ϑ-spanner, notice that

there exists αu ∈ R
s such that u = Bαu. We can thus write

|
〈

ct − ĉt, xt
i − u

〉

| = |
〈

B⊤
i

(

ct − ĉt
)

, αt
i − αu

〉

|
≤ ‖B⊤

i

(

ct − ĉt
)

‖2‖αt
i − αu‖2,

where the last inequality was obtained by Cauchy-Schwartz. Now recalling the definition of ĉt, we have that

B⊤
i

(

ct − ĉt
)

=
(

B⊤
i −B⊤

i M+
i,tBiαi,tα

⊤
i,tB

⊤
i

)

ct

=
(

I −B⊤
i M+

i,tBiαi,tα
⊤
i,t

)

B⊤
i ct
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Recalling (8), we have that

(

I −B⊤
i M+

i,tBiαi,tα
⊤
i,t

)

� |1− ϑ2 s
2

µt
|Im � ϑ2 s

2

µt
Im

for µt ≤ s2ϑ. We therefore get that

‖B⊤
i

(

ct − ĉt
)

‖2 ≤ ϑ2 s
5/2cmax

µt

This allows us to conclude that
〈

ct − ĉt, xt
i − u

〉

≤ m3cmaxϑ
3

µt

(using s ≤ m). The sequence (〈ct − ĉt, xt
i − u〉)t is therefore a bounded sequence of martingale increments.

We can apply Azuma-Hoeffding’s inequality.

By plugging (5) into (4), we have reduced the problem of bounding the regret to controlling the regret of
moving OGD given by R

(

x1:T
i , ĉ1:T ;u

)

.

Lemma 4 (Moving OGD). Let x1:T
i and ĉ1:Ti be the sequences produced by Algorithm 2,

R
(

x1:T
i , ĉ1:T ;u

)

≤ 2m

γT
+ 2

T
∑

t=1

γt‖ĉt‖22 + 2mcmax

T
∑

t=1

µt. (3)

Proof. The idea here will be to relate α1:T
i to a sequence that is almost performing Online Gradient Descent

on the fixed polytope Di. To this end, we introduce the auxiliary sequence α̃1:T
i defined as

α̃t
i =

1

1− µt
(αt

i −
µt

s
1)

and its corresponding point x̃t
i = Biα̃

t
i. Since αt

i ∈ Dµt

i , we have that α̃t
i ∈ Di. Moreover, a simple re-

arrangement gives αt
i = (1− µt)α̃

t
i +

µt

s 1 With this in hand, we can write that

〈

ĉt, xt
i − u

〉

= (1− µt)
〈

ĉt, x̃t
i − u

〉

+ µt

〈

ĉt, b̄i
〉

≤
〈

(1− µt)ĉ
t, x̃t

i − u
〉

+mcmaxµt

≤
〈

ĉt, x̃t
i − u

〉

+ 2mcmaxµt

It then follows that

R
(

x1:T
i , ĉ1:T ;u

)

≤ R
(

x̃1:T
i , ĉ1:T ;u

)

+ 2mcmax

T
∑

t=1

µt (10)

It remains to show that this regret term of the auxiliary sequence is controllable. This will follow from a
simple observation on the update rule. Recall that this update rule in Step 8 of Algorithm 2 is given by

αt+1
i = ΠDµt+1

[

αt
i − γtB

⊤
i ĉt
]

By Lemma 16, we know that we can express Π
D

µt+1

i
in terms of ΠDi , which allows us to write that

αt+1
i = (1− µt+1)ΠDi

[

1

1− µt+1
(αt

i − γtB
⊤
i ĉt − µt

s
1)

]

+
µt

s
1

Rearranging we find that

α̃t+1
i = ΠDi

[

α̃t
i −

γt
1− µt+1

B⊤
i ĉt + (µt+1 − µt)

(

αt
i − 1

s1

(1 − µt)(1− µt+1)

)]
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The last term in the projection is an error term that can easily be handled, we denote it by et :=
(

αt
i−

1
s1

(1−µt)(1−µt+1)

)

.

We thus have that the auxiliary sequence is performing online gradient descent with a small error term since

α̃t+1
i = ΠX

[

α̃t
i − γ̃tB

⊤
i ĉt + (µt+1 − µt)et

]

where γ̃t :=
γt

1−µt+1
. To control the regret of this approximate OGD, we consider the regret incurred on a

single update.
Recall that u ∈ Xi and that there exists αu ∈ Di such that u = Biα

u. We know by the contractive
property of the projection that

‖α̃t+1
i − αu‖22 ≤ ‖α̃t

i − αu − γ̃tB
⊤
i ĉt + (µt+1 − µt)et‖22

≤ ‖α̃t
i − αu‖22 − 2γ̃t

〈

ĉt, x̃t
i − u

〉

+ 2γ̃2
t ‖B⊤

i ĉ
t‖22 + 2(µt+1 − µt)

〈

et, α̃
t
i − αu

〉

+ 2(µt+1 − µt)
2‖et‖22

where the second inequality follows from Young’s inequality. Now since 0 ≤ µt ≤ 1
2 for t ≥ 32m4n

cmax
, we have

that ‖et‖2 ≤ 2
√
m and (µt+1 − µt)

2 ≤ 1
2 (µt − µt+1). Consequently,

‖α̃t+1
i − αu‖22 ≤ ‖α̃t

i − αu‖22 − 2γ̃t
〈

ĉt, x̃t
i − u

〉

+ 2γ̃2
t ‖B⊤

i ĉt‖22 + 8m(µt − µt+1)

Rearranging, we obtain that

〈

ĉt, x̃t
i − u

〉

≤ 1

2γ̃t

(

‖α̃t
i − αu‖22 − ‖α̃t+1

i − αu‖22
)

+ γ̃t‖B⊤
i ĉ

t‖22 +
8m

γ̃t
(µt − µt+1)

By summing from t = t̄ := 32m4n
cmax

to t = T and using the telescoping Lemma 18, we find that

R
(

x̃t̄:T
i , ĉt̄:T ;u

)

≤ 5m

γT
+ 2

T
∑

t=t̄

γt‖B⊤
i ĉt‖22

where we have used the fact that γt ≤ γ̃t ≤ 2γt and m ≥ 2 to simplify the expression. Finally, using that

R
(

x̃1:t̄
i , ĉ1:t̄;u

)

≤ 32nm4,

we conclude that

R
(

x̃1:T
i , ĉ1:T ;u

)

≤ 5m

γT
+ 2

T
∑

t=1

γt‖ĉ‖22 + 32nm4

We obtain the result by plugging the inequality above inside (10).

We now dispose of all the necessary results to prove Theorem 6.

Proof. Let u ∈ Si. Let δ ∈ (0, 1). By invoking Lemma 5, then Lemma 6 then finally Lemma 4, we find that,
with probability 1− δ/|Si|

R
(

p1:Ti , c1:T ;u
)

≤ 5m

γT
+2

T
∑

t=1

γt‖ĉt‖22+2mcmax

T
∑

t=1

µt+m3cmaxϑ
3/2

√

√

√

√

T
∑

t=1

1

µ2
t

log(|Si|/δ)+cmaxm

√

T log

( |Si|
δ

)

+32nm4

By invoking Lemma 9,

R
(

p1:Ti , c1:T ;u
)

≤ 5m

γT
+2

T
∑

t=1

γtm
5c2maxϑ

2

µ2
t

+2mcmax

T
∑

t=1

µt+m3cmaxϑ
3/2

√

√

√

√

T
∑

t=1

1

µ2
t

log(|Si|/δ)+cmaxm

√

T log

( |Si|
δ

)

+32nm4

Now plugging in the choice of step-sizes γt =
√

cmaxµt

ϑn3m3t and µt =
m4/5n1/5ϑ1/5

t1/5c
1/5
max

, we have that

R
(

p1:Ti , c1:T ;u
)

≤ Õ
(

m2.3c2.8
√

log
|Si|
δ

T 4/5

)
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Finally, using a union bound, the regret above holds uniformly for any u ∈ Si with probability 1 − δ. In
particular it holds for the fixed strategy in hindsight. Consequently,

R
(

p1:Ti , c1:T
)

≤ Õ
(

m2.8c2.8T 4/5

√

log
1

δ

)

where we have used the fact that log |Si| ≤ m.

Remark 13. Notice that the choice of γt and µt are done to optimize the rate of convergence to NE. To
optimize the regret bound, we can choose γt =

µt

m2cmaxϑt
and µt =

1
2t1/4

to obtain R
(

p1:Ti , c1:T
)

≤ m3T 3/4.

C Nash convergence analysis

C.1 Properties of the potential function Φ

In this section we show that the potential function is bounded, Lipschitz and smooth. All three properties
will be used in later proofs. Recall that the potential function is given by

Φ(x) =
∑

e∈E

∑

S⊆[n]

∏

j∈S

xje

∏

j /∈S

(1 − xje)

|S|
∑

ℓ=0

ce(ℓ)

Lemma 11 (Bounded potential function). The potential function Φ is bounded and for all x ∈ X ,

|Φ(x)| ≤ nmcmax

Proof. This can easiliy be seen by rewriting the potential function as follows

Φ(x) =
∑

e∈E

∑

S⊆[n]

∏

j∈S

xje

∏

j /∈S

(1 − xje)

|S|
∑

ℓ=0

ce(ℓ)

=
∑

e∈E

∑

S⊆[n]

P (“set of agents that picked e” = S)
|S|
∑

ℓ=0

ce(ℓ)

≤ ncmax

∑

e∈E

∑

S⊆[n]

P (“set of agents that picked e” = S)

= ncmax

∑

e∈E

1

= nmcmax

Lemma 12 (Lipschitz potential function). The gradient of Φ is bounded and

‖∇Φ(x)‖2 ≤
√
nmcmax

Proof. We start my computing the gradient coordinate at i, e for i ∈ [n] and e ∈ [m].

∂Φ(x)

∂xie
=

∑

S−i⊆[n−1]

∏

j∈S−i

xje

∏

j /∈S−i

(1− xje)

|S−i|+1
∑

ℓ=0

ce(ℓ)−
∑

S−i⊆[n−1]

∏

j∈S−i

xje

∏

j /∈S−i

(1− xje)

|S−i|
∑

ℓ=0

ce(ℓ) (11)

=
∑

S−i⊆[n−1]

∏

j∈S−i

xje

∏

j /∈S−i

(1− xje)ce (|S−i|+ 1) . (12)

Observe then that

0 ≤ ∂Φ(x)

∂xie
≤ cmax

Since the ℓ∞ norm is bounded by cmax, we obtain the ℓ2 norm bound by multiplying by the dimension.
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Lemma 13 (Smooth potential function). (Lemma 9 of [68]) The gradient of Φ is Lipschitz continuous and
for any x, y ∈ X

‖∇Φ(x)−∇Φ(y)‖ ≤ 2n2
√
mcmax‖x− y‖2

With this lemma, proving that Φ̃ is smooth becomes immediate.

Proposition 4. The function Φ̃ is 1
λ -smooth with λ = (2n2m7/2cmax)

−1.

Proof. The operator norm of the matrix B can easily be bounded as it is a block diagonal matrix. Indeed
we have that

‖B‖2 ≤ max
i=1,...,n

‖Bi‖2 ≤ max
i=1,...,n

‖Bi‖F ≤ m2.

Conseqently, the smoothness constant of Φ̃ is obtained by multiplying the smoothness constant of Φ by
m2.

A final property we will use is the following which states that if all other players stay fixed, the cost
incurred by a single agent i is linear in terms of its strategy.

Lemma 14 (Linearized cost). Let π ∈ ∆(S1)× . . .∆(Sn) with marginalization x ∈ X . Then, for all i ∈ [n],

Ci(πi, π−i) =

〈

∂Φ(x)

∂xi
, xi

〉

and ∂Φ(x)
∂xi

only depends on x−i.

Proof. Let i ∈ [n]. By definition of the cost,

Ci(πi, π−i) = E(pi,p−i)∼(πi,π−i)

[

∑

e∈pi

ce(ℓe(pi, p−i))

]

= Epi∼πi

[

Ep−i∼π−i

[

∑

e∈E

ce(ℓe(pi, p−i))1 [e ∈ pi]

∣

∣

∣

∣

∣

pi

]]

=
∑

e∈E

Ep−i∼π−i [ce(ℓe(p−i) + 1)]Epi∼πi [1 [e ∈ pi]]

=
∑

e∈E

Ep−i∼π−i [ce(ℓe(p−i) + 1)]xie

where the third equality follows form the fact that ce(ℓe(pi, p−i))1 [e ∈ pi] = ce(ℓe(p−i) + 1)1 [e ∈ pi]). We
then observe that Ep−i∼π−i [ce(ℓe(p−i) + 1)] is precisely what is computed in equation (12) to find that

Ci(πi, π−i) =

〈

∂Φ(x)

∂xi
, xi

〉

C.2 Proof of Theorem 7

As stated in section 5.2, we show convergence to Nash equilibria by showing convergence to a stationary
point of the potential function. This strategy is valid because of the following result relating Nash equilibria
with stationary points.

Proposition 3 (From Stationarity to Nash). Let π ∈ ∆(S1)×· · ·×∆(Sn). Let x ∈ X be the marginalization of
π. If x = Bα, with α ∈ D an (ǫ, µ)-stationary point, then π is a 4n2.5m4cmax (ǫ+ µ)-mixed Nash equilibrium.
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Proof. Let π′
i ∈ ∆(Xi) with marginalization x′

i ∈ Xi. Let x′ = [x1, . . . , x
′
i, . . . , xn] differ from x only at x′

i.
By definition of the potential function, we know that

Ci(πi, π−i)− Ci(π
′
i, π−i) = Φ(xi, x−i)− Φ(x′

i, x−i)

By further invoking Lemma 14, and using the fact that ∂Φ(x)
∂xi

only depends on x−i, we have that

Ci(πi, π−i)− Ci(π
′
i, π−i) =

〈

∂Φ(x)

∂xi
, xi − x′

i

〉

= 〈∇Φ(x), x− x′〉

where the last equality comes from the fact that x− x′ is zero except on the xi block of coordinates. Since
x− x′ = B(α− α′) for some α′ ∈ D, we have that

Ci(πi, π−i)− Ci(π
′
i, π−i) =

〈

∇Φ̃(x), α− α′
〉

We now exploit the fact that α is stationary. Let α+ = ΠDµ

[

α− λ
2 Φ̃(α)

]

. By definition of the projection,

for any u ∈ Dµ, it holds that
〈

α− λ

2
∇Φ̃(α)− α+, u− α+

〉

≤ 0

By rearranging, we find that
〈

∇Φ̃(α), α+ − u
〉

≤ 2

λ

〈

α− α+, α+ − u
〉

With this inequality in hand, we obtain that

〈

∇Φ̃(α), α− u
〉

=
〈

∇Φ̃(α), α+ − u
〉

+
〈

∇Φ̃(x), α− α+
〉

≤ 2

λ

〈

α− α+, α+ − u
〉

+
〈

∇Φ̃(α), α− α+
〉

≤
(

2
√
nm

λ
+ ‖∇Φ̃(α)‖2

)

‖α+ − α‖2

≤
(

4n2.5m4cmax

)

Gµ(α).

To conclude we simply take u = (1− µ)α′ + µ 1
s1 which is necessarily in Dµ to find that

〈

∇Φ̃(x), x− x′
〉

=
〈

∇Φ̃(x), x− u
〉

+
〈

∇Φ̃(x), u− x′
〉

≤
(

4n2.5m4cmax

)

Gµ(x) + nmcmaxµ

≤ 4n2.5m4cmax (G
µ(x) + µ)

Thanks to the proposition above we can focus our attention on proving convergence to stationary points.

Lemma 7 (Estimator property). Let t ∈ [T ] and Ft be the sigma-field generated by α1, . . . , αt. It holds that

1. Et[∇t] = ∇Φ̃(αt),

2. Et[‖∇t‖22] ≤
nm4c2max

µt

where Et [·] , E [·|Ft].

Proof. Let i ∈ [n] and e ∈ E. First, observe that from lemma 14, we have that the linearized cost ct for agent
i satisfies

Et

[

cte
]

=
∂Φ

∂xie
(xt)
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Now using the tower property, we have that

Et [[∇t]i] = Et

[

B⊤
i ĉti
]

= B⊤
i Et



E



M+
i,tp

t
i





∑

e∈pt
i

cte



 |pti









= B⊤
i

∑

pk∈supp(πt
i)

P
(

pti = pk
)

M+
i,tpk

∑

e∈pk

Et

[

cte|pti = pk
]

= B⊤
i

∑

pk∈supp(πt
i)

P
(

pti = pk
)

M+
i,tpk

∑

e∈pk

∂Φ

∂xie
(xt)

= B⊤
i

∑

pk∈supp(πt
i)

P
(

pti = pk
)

M+
i,tpkp

T
k

∂Φ

∂xi
(xt)

= B⊤
i M+

i,tMi,t
∂Φ

∂xi
(xt)

= B⊤
i

∂Φ

∂xi
(xt)

where the last equality follows from (8). We thus conclude that

Et [∇t] = ∇Φ̃(αt).

For the second point,we know from equation (9) in the proof of Lemma 9 that

B⊤
i ĉt =

〈

ct, pti
〉

N+
i,tα

p
i,t (13)

We can then control the expectation of square norm of this estimator as follows

Et

[

‖B⊤
i ĉt‖22

]

≤ m2c2maxEt

[

∥

∥N+
i,tα

p
i,t

∥

∥

2

2

]

= m2c2maxEt

[

tr
(

N+
i,tα

p
i,tα

p⊤
i,t N

+⊤
i,t

)]

= m2c2maxtr
(

N+
i,tEt

[

αp
i,tα

p⊤
i,t

]

N+⊤
i,t

)

≤ m2c2maxtr
(

N+
i,t

)

≤ m4c2max

1

µt

where the last inequality follows from (7) where we have used that s ≤ m. Now, since ∇t is a concatenation
of the estimators B⊤

i ĉt, we find that

Et

[

‖∇t‖22
]

≤ nm4c2max

µt
.

Lemma 8 (Gap control). Let Gt(α) := ‖ΠDµt

[

α− λ
2∇Φ̃(α)

]

−x‖2 denote the µt-stationarity gap. We have

that for any α ∈ Dµt ,
Gt(α) ≤ λ‖∇M t

λΦ̃
(α)‖2

Proof. The proof relies on introducing a fixed point y such that

y = ΠDµ

[

x− λ

2
∇Φ̃(y)

]

.
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Luckily the point y = x− λ
2∇M

µ

λ ˜̃Φ
(x) is such a fixed point(see point 2 in 17). Now we can write

Gµ(x) = ‖ΠDµ

[

x− λ

2
∇Φ̃(x)

]

− x‖2

≤ ‖ΠDµ

[

x− λ

2
∇Φ̃(x)

]

−ΠDµ

[

x− λ

2
∇Φ̃(y)

]

‖2 + ‖y − x‖2

≤ λ

2
‖∇Φ̃(x)−∇Φ̃(y)‖+ ‖y − x‖2

≤ 3

2
‖y − x‖2 =

3λ

4
‖∇Mµ

λΦ̃
(x)‖2 ≤ λ‖∇Mµ

λΦ̃
(x)‖2

Theorem 12 (Stochastic gradient descent). Consider the sequence α1, . . . , αT produced by Equation 6. Then,

1

T

T
∑

t=1

E
[

‖∇M t
λΦ̃

(αt)‖2
]

≤ 2n1.5

√

√

√

√

2m1.5cmax

γTT
+

n3m7.5

γTT

T
∑

t=1

γ2
t

µt

Proof. Let us first recall some of the notation we use. The time dependent Moreau envelope is given by

M t
λΦ̃

(x) , min
y∈Dµt

{

Φ̃(y) +
1

λ
‖x− y‖22

}

,

Notice here that the envelope is taken with respect to a time varying polytope. The iterates α1:T are updated
by the following update rule

αt+1 = ΠDµt+1

[

αt − γt · ∇t

]

(14)

With this in mind, we proceed with the proof. Since M t
λΦ̃

is 2
λ -smooth (by point 4 of Lemma 17), we have

that

M t
λΦ̃

(αt+1) ≤M t
λΦ̃

(αt) +
〈

∇M t
λΦ̃

(αt), αt+1 − αt
〉

+
1

λ
‖αt+1 − αt‖22

Now since ∇M t
λΦ̃

(αt) = 2
λ

(

αt − proxtλ
2
Φ̃
(αt)

)

(by point 3 of Lemma 17), where we can invoke the contractive

properties of the projection in (14) to find that

M t
λΦ(α

t+1) ≤M t
λΦ(α

t)− γt
〈

∇M t
λΦ̃

(αt),∇t

〉

+
γ2
t

λ
‖∇t‖22

Taking the expectation, we have

E
[

M t
λΦ(α

t+1)
]

≤ E
[

M t
λΦ(α

t)
]

− γtE
[〈

∇M t
λΦ̃

(αt),Et [∇t]
〉]

+
γ2
t

λ
E
[

‖∇t‖22
]

Using Lemma 7, we can replace the terms involving ∇t on the right hand side to find that

E
[

M t
λΦ(α

t+1)
]

≤ E
[

M t
λΦ(α

t)
]

− γtE
[〈

∇M t
λΦ̃

(αt),∇Φ̃(αt)
〉]

+
nm4c2max

λ

γ2
t

µt

Invoking Lemma 15, we obtain

E
[

M t
λΦ(α

t+1)
]

≤ E
[

M t
λΦ(α

t)
]

− γt
4
‖∇M t

λΦ̃
(αt)‖22 +

nm4c2max

λ

γ2
t

µt

By rearranging the terms, we can write that

γt
4
E
[

‖∇M t
λΦ̃

(αt)‖22
]

≤ E
[

M t
λΦ(α

t)
]

− E
[

M t
λΦ(α

t+1)
]

+
nm4c2max

λ

γ2
t

µt
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At this point we notice that M t+1

λΦ̃
(αt+1) ≤M t

λΦ̃
(αt+1) since Dµt ⊂ Dµt+1 , which gives us

γt
4
E
[

‖∇M t
λΦ̃

(αt)‖22
]

≤ E
[

M t
λΦ(α

t)
]

− E
[

M t+1
λΦ (αt+1)

]

+
nm4c2max

λ

γ2
t

µt

Now summing from t = 1, . . . , T and telescoping, we find that

1

T

T
∑

t=1

E
[

‖∇M t
λΦ̃

(αt)‖22
]

≤
8Mmax

λΦ̃

γTT
+ 4

nm4c2max

λγTT

T
∑

t=1

γ2
t

µt

where we have used the fact that γT ≤ γt and defined Mmax
λΦ̃

:= maxt∈[T ]maxx∈Dµt M t
λΦ̃

(x). By taking the
square root and applying Jensen’s inequality, we have that

1

T

T
∑

t=1

E
[

‖∇M t
λΦ̃

(αt)‖2
]

≤

√

√

√

√

8Mmax
λΦ̃

γTT
+ 4

nm4c2max

λγTT

T
∑

t=1

γ2
t

µt

Finally by plugging in the values of Mmax
λΦ̃
≤ n3m3/2cmax and 1

λ = 2n2m7/2cmax, we find that

1

T

T
∑

t=1

E
[

‖∇M t
λΦ̃

(αt)‖2
]

≤ 2n1.5

√

√

√

√

2m1.5cmax

γTT
+

ϑn3m7.5

γTT

T
∑

t=1

γ2
t

µt

Lemma 15. For any t ∈ [T ], we have that

〈

∇M t
λΦ̃

(αt),∇Φ̃(αt)
〉

≥ 1

4
‖∇M t

λΦ̃
(αt)‖22

Proof. This lemma is obtained by exploiting the smoothness of Φ. We begin by defining the gradient step
yt := αt − λ

2∇M t
λΦ̃

(αt), which allows us to write

〈

∇M t
λΦ̃

(αt),∇Φ̃(αt)
〉

= − 2

λ

〈

yt − αt,∇Φ̃(αt)
〉

. (15)

Now since Φ is 1
λ -smooth, we have that

−
〈

yt − αt,∇Φ̃(αt)
〉

≥ Φ̃(αt)− Φ̃(yt)− 1

2λ
‖yt − αt‖22

=

(

Φ̃(αt) +
1

λ
‖αt − αt‖22

)

−
(

Φ̃(yt) +
1

λ
‖yt − αt‖22

)

+
1

2λ
‖yt − αt‖22

≥ 1

2λ
‖yt − αt‖22 (because yt = argmin

y∈D
µt+1

i

Φ̃(y) +
1

λ
‖αt − y‖22)

=
λ

8
‖∇M t

λΦ̃
(αt)‖22.

Plugging this result into (15) gives

〈

∇M t
λΦ̃

(αt),∇Φ̃(αt)
〉

≥ 1

4
‖∇M t

λΦ̃
(αt)‖22.

We can now proceed to prove Theorem 7.
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Proof. Let u be sampled uniformly from [T ]. The joint strategy profile πu has marginalization αu ∈ Dµu ,
and therefore, by lemma 3 we have that

1

T
E

[

T
∑

t=1

max
i∈[n]

[

ci(π
t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]

]

≤ 4n2.5m4cmaxE [Gu(xu) + µu]

Expanding the right hand side, we have that

E [Gu(xu) + µu] ≤
1

T

T
∑

t=1

E
[

Gt(xt)
]

+
1

T

T
∑

t=1

µt

By Lemma 8, we get that

E [Gu(xu) + µu] ≤
λ

T

T
∑

t=1

E
[

‖∇M t(xt)‖2
]

+
1

T

T
∑

t=1

µt

It then follows by Theorem 12 that

E [Gu(xu) + µu] ≤ 2λn1.5

√

√

√

√

2m1.5cmax

γTT
+

n3m7.5

γTT

T
∑

t=1

γ2
t

µt
+

1

T

T
∑

t=1

µt

=
1√

nm4cmax

√

√

√

√

2m1.5cmax

γTT
+

n3m7.5

γTT

T
∑

t=1

γ2
t

µt
+

1

T

T
∑

t=1

µt

Now, plugging in γt =
√

cmaxµt

n3m6t

E [Gu(xu) + µu] ≤
1√

nm4cmax

√

c1.5maxm
4.5n1.5 logT√
TµT

+
1

T

T
∑

t=1

µt

≤ n1/4

m1.75c
1/4
max

√

3 logT√
TµT

+
1

T

T
∑

t=1

µt

Finally, setting the exploration parameter µt =
n1/5

m7/5t1/5c
1/5
max

and using the fact that
∑T

t=1 t
−1/5 ≤ 5T 4/5

4 , we

obtain

1

T
E

[

T
∑

t=1

max
i∈[n]

[

ci(π
t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]

]

≤ 4m2.6n2.7c
4/5
max

T 1/5
.

Therefore choosing T ≥ 45m13n13.5c4max

ǫ ensures

1

T
E

[

T
∑

t=1

max
i∈[n]

[

ci(π
t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]

]

≤ ǫ

We now have all the ingredients we need to prove Corollary 1.

Proof. Let u be sampled uniformly from [T ]. The joint strategy profile πu has marginalization αu ∈ Dµu ,
and therefore, by lemma 3, it is a

4n2.5m4cmax (G
u(xu) + µu)−mixed Nash equilibrium
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Now let δ ∈ (0, 1). By Markov’s inequality and Theorem 7,

max
i∈[n]

[

ci(π
u
i , π

u
−i)− min

πi∈∆(Pi)
ci(πi, π

u
−i)

]

≤ ǫ/δ

with probability 1− δ if T ≥ 45m13n13.5c4maxθ
ǫ . Finally, putting everything together we find that πu is a

Õ
(

n2.7m13/5c
4/5
max

δ
T−1/5

)

with probability 1 − δ. Finally, to make the quantity
n2.7m13/5c4/5max

δ T−1/5 equal to ǫ/δ we choose T ≥
Θ
(

m13n13.5/ǫ5
)

.
For the first statement of the corollary, we the set of time steps B := {t ∈ {1, t} : Et > ǫ/δ2} where

Et := maxi∈[n]

[

ci(π
t
i , π

t
−i)−minπi∈∆(Pi) ci(πi, π

t
−i)
]

which is a random variable. With probability 1 − δ,
∑T

t=1 Et ≤ ǫT
δ we directly get that we probability 1 − δ, |B| ≤ δT . As a result, with probability ≥ 1 − δ,

(1− δ) fraction of the profiles π1, . . . .πT are ǫ/δ2-Mixed NE.

C.3 Technical Lemmas

Lemma 16 (Projection lemma). Let Dµ
i be a bounded away polytope. For any z ∈ R

s, the projection on Dµ
i

can be expressed as

ΠDµ
i
[z] = (1− µ)ΠDi

[

1

1− µ
(z − µ

s
1)

]

+
µ

s
1

Proof. We first express the indicator function of Dµ
i in terms of the indicator of Di. We have that for any

z ∈ R
s, by definition of the bounded away polytope,

ιDµ
i
(z) = ιDi

(

1

1− µ
(z − µ

s
1)

)

, (16)

The indicator function of Xµ
i is therefore obtained through an affine precomposition of the Xi indicator. We

can determine the prox of an affine precomposition by using properties (i) and (ii) in Table 10.1 of [28], which
yields the simple formula given in equation (2.2) of [69]. We thus find that

ΠDµ
i
[z] = (1− µ)ΠDi

[

1

1− µ
(z − µ

s
1)

]

+
µ

s
1

Lemma 17 (Moreau enveloppe and proximity operators). Let f : X 7→ R be a 1/λ-smooth function. Its
Moreau-Yosida regularization defined as

eηf(x) = inf
y∈X

f(y) +
1

2η
‖y − x‖22

verifies the following properties for η < λ,

1. The proximity operator given by the equation below is single valued

proxηf (x) = argmin
y∈X

f(y) +
1

2η
‖y − x‖22. (17)

2. By optimality conditions of (17),

proxηf (x) = ΠX

[

x− η∇f(proxηf (x))
]
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3. eηf is continuously differentiable and

∇eηf(x) =
1

η

(

x− proxηf (x)
)

4. If η = λ/2, then ∇eηf is 1
η smooth.

Proof. All these properties follow from [52] Corollary 3.4 because 1
λ smooth functions are 1

λ weakly convex
functions. In our paper, we work with the function MλΦ̃, notice that it corresponds to the Moreau-Yosida
regularization

MλΦ = eλ
2
Φ̃

All the properties therefore follow with η = λ
2 .

Lemma 18 (Telescoping Lemma). Let (γt)t be a non-increasing sequence. Let (ut)t ∈ R
N
+ be a non-negative

sequence uniformly bounded by umax > 0, it holds that

T
∑

t=1

1

γt
(ut − ut+1) ≤

umax

γT

Proof.
T
∑

t=1

1

γt
(ut − ut+1) =

T
∑

t=1

ut

γt−1
− ut+1

γt
+

T
∑

t=1

(

1

γt
− 1

γt−1

)

ut

≤
T
∑

t=1

ut

γt−1
− ut+1

γt
+ umax

T
∑

t=1

1

γt
− 1

γt−1

=
u1

γ0
− uT+1

γT
+

umax

γT
− umax

γ0

≤ umax

γT
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